हिंदी

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) = N ( 4 N 2 + 6 N − 1 ) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

उत्तर

Let P(n) be the given statement.
Now,

\[P(n) = 1 . 3 + 3 . 5 + 5 . 7 + . . . + (2n - 1)(2n + 1) = \frac{n(4 n^2 + 6n - 1)}{3}\]

\[\text{ Step }  1: \]

\[P(1) = 1 . 3 = 3 = \frac{1(4 \times \left( 1 \right)^2 + 6 \times 1 - 1)}{3}\]

\[\text{ Hence, P(1) is true }  . \]

\[\text{ Step 2: }  \]

\[\text{ Let P(m) be true} . \]

\[\text{ Then,}  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[\text{ To prove: P(m + 1) is true}  . \]

\[\text{ That is, }  \]

\[1 . 3 + 3 . 5 + . . . + (2m + 1)(2m + 3) = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[ \text{ Now, P(m) is equal to: }  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[ \Rightarrow 1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) + (2m + 1)(2m + 3) = \frac{m(4 m^2 + 6m - 1)}{3} + (2m + 1)(2m + 3) \left[ \text{ Adding } (2m + 1)(2m + 3) \text{ to both sides }  \right]\]

\[ \Rightarrow P(m + 1) = \frac{m(4 m^2 + 6m - 1) + 3(4 m^2 + 8m + 3)}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4 m^3 + 6 m^2 - m + 12 m^2 + 24m + 9}{3} = \frac{4 m^3 + 18 m^2 + 23m + 9}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4m( m^2 + 2m + 1) + 10 m^2 + 19m + 9}{3}\]

\[ = \frac{4m(m + 1 )^2 + (10m + 9)(m + 1)}{3}\]

\[ = \frac{(m + 1)\left[ 4m(m + 1) + 10m + 9 \right]}{3}\]

\[ = \frac{(m + 1)}{3}(4 m^2 + 8m + 4 + 6m + 5)\]

\[ = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[\text{ Thus, P(m + 1) is true .}  \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n}  \in N .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 13 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


52n −1 is divisible by 24 for all n ∈ N.


32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×