हिंदी

Answer the following: Prove, by method of induction, for all n ∈ N 13.4.5+24.5.6+35.6.7+...+n(n+2)(n+3)(n+4)=n(n+1)6(n+3)(n+4) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`

योग

उत्तर

Let P(n) ≡ `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.

Step 1:

For n = 1, L.H.S. = `1/(3.4.5) = 1/60`

R.H.S. = `(1(1+1))/(6(1+3)(1+4))=2/(6(4)(5))=1/60`

∴ L.H.S. = R.H.S. for n = 1.

∴ P(1) is true.

Step 2: 

Let us assume that for some k ∈ N, P(k) is true,

i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) = ("k"("k" + 1))/(6("k" + 3)("k" + 4))` ...(1)

Step 3:

To prove that P(k + 1) is true, i.e., to prove that

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5)) = (("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`

Now, L.H.S. = `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))`

= `("k"("k" + 1))/(6("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))`  ...[By (1)]

= `("k" + 1)/(("k" + 3)("k" + 4))["k"/6  + 1/("k" + 5)]`

= `("k" + 1)/(("k" + 3)("k" + 4))[("k"^2 + 5"k" + 6)/(6("k" + 5))]`

= `("k" + 1)/(("k" + 3)("k" + 4)) xx (("k" + 2)("k" + 3))/(6("k" + 5))`

= `(("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`

= R.H.S.

∴ P(k + 1) is true.

Step 4:

From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,

i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Methods of Induction and Binomial Theorem - Miscellaneous Exercise 4.2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Methods of Induction and Binomial Theorem
Miscellaneous Exercise 4.2 | Q II. (1) (iv) | पृष्ठ ८५

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×