हिंदी

Show by the Principle of Mathematical induction that the sum Sn of then terms of the series 1 2 + 2 × 2 2 + 3 2 + 2 × 4 2 + 5 2 + 2 × 6 2 + 7 2 + . . . is given by - Mathematics

Advertisements
Advertisements

प्रश्न

Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 

उत्तर

\[ \text{ Let } P\left( n \right): S_n = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ when n is even } }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ when n is odd} }\]
\[\text{ Step I: For } n = 1 i . e . P\left( 1 \right): \]
\[LHS = S_1 = 1^2 = 1\]
\[RHS = S_1 = \frac{1^2 \left( 1 + 1 \right)}{2} = 1\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n }  = 1 . \]
\[ \text{ Step II: For n }  = k, \]
\[\text{ Let } P\left( k \right): S_k = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{k \left( k + 1 \right)^2}{2}, \text{ when k is even} }{\frac{k^2 \left( k + 1 \right)}{2}, \text{ when k is odd }}, \text{ be true for some natural numbers } . \]
\[\text{ Step III: For }  n = k + 1, \]
\[\text{ Case 1: When k is odd, then } \left( k + 1 \right) \text{ is even .}  \]
\[P\left( k + 1 \right): \]
\[LHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + k^2 + 2 \times \left( k + 1 \right)^2 \]
\[ = \frac{k^2 \left( k + 1 \right)}{2} + 2 \times \left( k + 1 \right)^2 \left( \text{ Using step }  II \right)\]
\[ = \frac{k^2 \left( k + 1 \right) + 4 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)\left( k^2 + 4k + 4 \right)}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[RHS = \frac{\left( k + 1 \right) \left( k + 1 + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n = k + 1 when k is odd .}  \]
\[\text{ Case 2: When k is even, then }  \left( k + 1 \right) \text{ is odd .}  \]
\[P\left( k + 1 \right): \]
\[RHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + 2 \times k^2 + \left( k + 1 \right)^2 \]
\[ = \frac{k \left( k + 1 \right)^2}{2} + \left( k + 1 \right)^2 \left( \text{ Using step } II \right)\]
\[ = \frac{k \left( k + 1 \right)^2 + 2 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[RHS = \frac{\left( k + 1 \right)^2 \left( k + 1 + 1 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[As, LHS = RHS\]
\[\text{ So, it is true for n = k + 1 when k is even }  . \]
\[\text{ Hence, } P\left( n \right) \text{ is true for all natural numbers .}  \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 44 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×