Advertisements
Advertisements
प्रश्न
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
उत्तर
\[ \text{ Let } P\left( n \right): S_n = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ when n is even } }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ when n is odd} }\]
\[\text{ Step I: For } n = 1 i . e . P\left( 1 \right): \]
\[LHS = S_1 = 1^2 = 1\]
\[RHS = S_1 = \frac{1^2 \left( 1 + 1 \right)}{2} = 1\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n } = 1 . \]
\[ \text{ Step II: For n } = k, \]
\[\text{ Let } P\left( k \right): S_k = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{k \left( k + 1 \right)^2}{2}, \text{ when k is even} }{\frac{k^2 \left( k + 1 \right)}{2}, \text{ when k is odd }}, \text{ be true for some natural numbers } . \]
\[\text{ Step III: For } n = k + 1, \]
\[\text{ Case 1: When k is odd, then } \left( k + 1 \right) \text{ is even .} \]
\[P\left( k + 1 \right): \]
\[LHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + k^2 + 2 \times \left( k + 1 \right)^2 \]
\[ = \frac{k^2 \left( k + 1 \right)}{2} + 2 \times \left( k + 1 \right)^2 \left( \text{ Using step } II \right)\]
\[ = \frac{k^2 \left( k + 1 \right) + 4 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)\left( k^2 + 4k + 4 \right)}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[RHS = \frac{\left( k + 1 \right) \left( k + 1 + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n = k + 1 when k is odd .} \]
\[\text{ Case 2: When k is even, then } \left( k + 1 \right) \text{ is odd .} \]
\[P\left( k + 1 \right): \]
\[RHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + 2 \times k^2 + \left( k + 1 \right)^2 \]
\[ = \frac{k \left( k + 1 \right)^2}{2} + \left( k + 1 \right)^2 \left( \text{ Using step } II \right)\]
\[ = \frac{k \left( k + 1 \right)^2 + 2 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[RHS = \frac{\left( k + 1 \right)^2 \left( k + 1 + 1 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[As, LHS = RHS\]
\[\text{ So, it is true for n = k + 1 when k is even } . \]
\[\text{ Hence, } P\left( n \right) \text{ is true for all natural numbers .} \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Given an example of a statement P (n) such that it is true for all n ∈ N.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
(ab)n = anbn for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.