Advertisements
Advertisements
प्रश्न
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
उत्तर
Let P(n) be the given statement.
Now,
\[P(n) = 1 + 3 + 5 + . . . + (2n - 1) = n^2 \]
\[\text{ Step } 1: \]
\[P(1) = 1 = 1^2 \]
\[\text{ Hence, P(1) is true } . \]
\[\text{ Step } 2 : \]
\[\text{ Let P(m) be true . } \]
\[\text{ Then }, \]
\[1 + 3 + 5 + . . . + (2m - 1) = m^2 \]
\[\text{ To prove:} P(m + 1) \text{ is true } . \]
\[i . e . , \]
\[1 + 3 + 5 + . . . + \left\{ 2\left( m + 1 \right) - 1 \right\} = \left( m + 1 \right)^2 \]
\[ \Rightarrow 1 + 3 + 5 + . . . + \left( 2m + 1 \right) = \left( m + 1 \right)^2 \]
\[\text{ Now, we have: } \]
\[1 + 3 + 5 + . . . + (2m - 1) = m^2 \]
\[ \Rightarrow 1 + 3 + . . . + (2m - 1) + (2m + 1) = m^2 + 2m + 1 \left[ \text{ Adding } 2m + 1 \text{ to both sides } \right]\]
\[ \Rightarrow 1 + 3 + 5 + . . . + (2m + 1) = (m + 1 )^2 \]
\[\text{ Hence, P(m + 1) is true} . \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n} \in N . \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?