मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove by method of induction, for all n ∈ N: 1.3 + 3.5 + 5.7 + ..... to n terms = n3(4n2+6n-1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`

बेरीज

उत्तर

Let P(n) ≡ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`, for all n ∈ N

But the first factor in each term

i.e., 1, 3, 5 … are in A.P. with a = 1 and d = 2.

∴ nth term = a + (n –1)d = 1 +(n – 1)2 = (2n – 1)

Also second factor in each term

i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.

∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n+1)

∴ nth term, tn = (2n – 1) (2n + 1)

∴ P(n) ≡ 1.3 + 3.5 + 5.7 + .... + (2n – 1) (2n + 1) = `"n"/3(4"n"^2 + 6"n" - 1)`

Step I:

Put n = 1

L.H.S. = 1.3 = 3

R.H.S. = `1/3[4(1)^2 + 6(1) - 1]` = 3 = L.H.S.

∴ P(n) is true for n = 1.

Step II:

Let us consider that P(n) is true for n = k

∴ 1.3 + 3.5 + 5.7 + ..... + (2k – 1)(2k + 1)

= `"k"/3(4"k"^2 + 6"k" - 1)`   ...(i)

Step III:

We have to prove that P(n) is true for n = k + 1

i.e., to prove that

1.3 + 3.5 + 5.7 + …. + [2(k + 1) – 1][2(k + 1) + 1]

= `(("k" + 1))/3[4("k" + 1)^2 + 6("k" + 1) - 1]`

= `(("k" + 1))/3(4"k"^2 + 8"k" + 4 + 6"k" + 6 - 1)`

= `(("k" + 1))/3(4"k"^2 + 14"k" + 9)`

L.H.S. = 1.3 + 3.5 + 5.7 + ... + [2(k + 1) – 1][2(k + 1) + 1]

= 1.3 + 3.5 + 5.7 + ... + (2k – 1)(2k + 1) + (2k + 1)(2k + 3)

= `"k"/3(4"k"^2 + 6"k" - 1) + (2"k" + 1) (2"k" + 3)`  ...[From (i)]

= `1/3[4"k"^3 + 6"k"^2 - "k" + 3(2"k" + 1)(2"k" + 3)]`

= `1/3(4"k"^3 + 6"k"^2 - "k" + 12"k"^2 + 24"k" + 9)`

= `1/3(4"k"^3 + 18"k"^2 + 23"k" + 9)`

= `1/3("k" + 1)(4"k"^2 + 14"k" + 9)`

= R.H.S.

∴ P(n) is true for n = k + 1

 Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

∴ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)` for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [पृष्ठ ७३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 7 | पृष्ठ ७३

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×