Advertisements
Advertisements
प्रश्न
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
उत्तर
Let P(n): cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`
Step 1: P(1): cos α = `((cos alpha)(sin beta/2))/(sin beta/2)` = cos α
Step 2: P(k): cos α + cos(α + β) + cos(α + 2β) + ... + cos[α + (k – 1)β]
= `(cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2))/(sin beta/2)`. Let it be true.
Step 3: P(k + 1): cos α + cos(α + β) + cos(α + 2β) + ... + cos[α + (k – 1)β] + cos[α + (k + 1 – 1)β]
= `(cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2))/(sin beta/2) + cos(alpha + kbeta)` ......(From Step 2)
= `(2cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2) + 2cos(alpha + kbeta).sin beta/2)/(2 sin beta/2)`
= `(sin[alpha + kbeta - beta/2] - sin[alpha - beta/2] + sin[alpha + kbeta + beta/2] - sin[alpha + kbeta - beta/2])/(2sin beta/2)` ......[∵ 2 cosA sinB = sin(A + B) – sin(A – B)]
= `(sin[alpha + kbeta + beta/2] - sin(alpha - beta/2))/(2sin beta/2)`
= `(2cos(alpha + (kbeta)/2) sin(k + 1) beta/2)/(2sin beta/2)` ......`[because sin"A" - sin"B" = 2cos ("A" + "B")/2 . sin ("A" - "B")/2]`
= `(cos(alpha + (kbeta)/2).sin(k + 1) beta/2)/(sin beta/2)`
= `(cos[alpha + ((k + 1 - 1)/2)beta] sin((k + 1)/2)beta)/(sin beta/2)` which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
52n −1 is divisible by 24 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.