मराठी

Sin X + Sin 3 X + . . . + Sin ( 2 N − 1 ) X = Sin 2 N X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 

उत्तर

Let P(n) be the given statement.

\[P(n): \sin x + \sin 3x + . . . + \sin\left( 2n - 1 \right)x = \frac{\sin^2 nx}{\sin x}\]
\[\text{ Step } 1: \]
\[P(1): \sin x = \frac{\sin^2 x}{\sin x}\]
\[\text{ Thus, P(1) is true } . \]
\[\text{ Step 2: } \]
\[\text{ Let P(m) be true .}  \]
\[ \therefore \sin x + \sin 3x + . . . + \sin\left( 2m - 1 \right)x = \frac{\sin^2 mx}{\sin x}\]
\[\text{ We shall show that P(m + 1) is true .}  \]
\[\text{ We know that P(m) is true } . \]
\[ \therefore \sin x + \sin 3x + . . . + \sin (2m - 1) = \frac{\sin^2 mx}{\sin x}\]
\[ \Rightarrow \sin x + \sin 3x + . . . \sin (2m - 1)x + \sin (2m + 1)x = \frac{\sin^2 mx}{\sin x} + \sin (2m + 1)x \left( \text{ Adding }  \sin (2m + 1)x \text{ to both the sides } \right)\]
\[ \Rightarrow P(m + 1)x = \frac{\sin^2 mx + \sin x\left[ \sin mx\cos\left( m + 1 \right)x + \sin\left( m + 1 \right)x \cos x \right]}{\sin x}\]
\[ = \frac{\sin^2 mx + \sin x\left( \sin mx\cos mxcos x - \sin^2 mx\sin x + \sin mx\cos x\cos mx + \cos^2 mx\sin x \right)}{\sin x}\]
\[ = \frac{\sin^2 mx + 2\sin x\cos x\cos mx - \sin^2 x \sin^2 mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx\left( 1 - \sin^2 x \right) + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx \cos^2 x + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\left( \sin mx \cos x + \cos mx \sin x \right)^2}{\sin x}\]
\[ = \frac{\left[ \sin\left( m + 1 \right) \right]^2}{\sin x}\]
\[\text{ [Hence, P(m + 1) is true } . \]
\[ \text{ By the principle of mathematical induction, the given statement P(n) is true for all } n \in N . \]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 39 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

Given an example of a statement P (n) such that it is true for all n ∈ N.

 

1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×