मराठी

Using Principle of Mathematical Induction, Prove that √ N < 1 √ 1 + 1 √ 2 + 1 √ 3 + . . . + 1 √ N for All Natural Numbers N ≥ 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 

उत्तर

\[\text { Let }  P\left( n \right): \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 . \]
\[\text{ Step I: For }  n = 2, \]
\[P\left( 2 \right): \]
\[LHS = \sqrt{2} \approx 1 . 414\]
\[RHS = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \frac{\sqrt{2}}{2} \approx 1 + 0 . 707 = 1 . 707\]
\[\text{ As, LHS < RHS } \]
\[\text{ So, it is true for }  n = 2 . \]
\[ \text{Step II : For } n = k \]
\[\text{ Let}  P\left( k \right): \sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{k}} \text{ be true for some natural numbers } n \geq 2 . \]
\[\text{ Step III: For } n = k + 1, \]
\[P\left( k + 1 \right): \]
\[LHS = \sqrt{k + 1}\]
\[RHS = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k + 1}}\]
\[ > \sqrt{k} + \frac{1}{\sqrt{k + 1}}\]
\[\text{ As, } \sqrt{k + 1} > \sqrt{k}\]
\[ \Rightarrow \frac{\sqrt{k}}{\sqrt{k + 1}} < 1\]
\[ \Rightarrow \frac{k}{\sqrt{k + 1}} < \sqrt{k}\]
\[ \Rightarrow \frac{k + 1}{\sqrt{k + 1}} - \frac{1}{\sqrt{k + 1}} < \sqrt{k}\]
\[ \Rightarrow \sqrt{k + 1} - \frac{1}{\sqrt{k + 1}} < \sqrt{k}\]
\[ \Rightarrow \sqrt{k} + \frac{1}{\sqrt{k + 1}} > \sqrt{k + 1}\]
\[i . e . LHS < RHS\]
\[\text{ So, it is also true for n }  = k + 1 . \]
\[\text{ Hence,}  P\left( n \right): \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers }  n \geq 2 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 49 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×