मराठी

32n+2 −8n − 9 is divisible by 8 for all n ∈ N. - Mathematics

Advertisements
Advertisements

प्रश्न

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.

बेरीज

उत्तर

Let P(n) be the given statement.
Now,

\[P(n): 5^{2n + 2} - 24n - 25 \text{ is divisible by 576 for all }  n \in N . \]
\[\text{ Step } 1: \]
\[P(1) = 5^{2 + 2} - 24 - 25 = 625 - 49 = 576 \]
\[\text{ It is divisible by }  576 . \]
\[\text{ Thus, P(1) is true}  . \]
\[\text{ Step2:}  \]
\[\text{ Let P(m) be true . } \]
\[Then, \]
\[ 5^{2m + 2} - 24m - 25 \text{ is divisible by } 576 . \]
\[\text { Let } 5^{2m + 2} - 24m - 25 = 576\lambda, \text{ where } \lambda \in N . \]
\[\text { We need to show that P(m + 1) is true whenever P(m) is true }  . \]
\[ \text{ Now, } \]
\[P(m + 1) = 5^{2m + 4} - 24(m + 1) - 25\]
\[ = 5^2 \times (576\lambda + 24m + 25) - 24m - 49\]
\[ = 25 \times 576\lambda + 600m + 625 - 24m - 49\]
\[ = 25 \times 576\lambda + 576m + 576\]
\[ = 576(25\lambda + m + 1) \]
\[\text{ It is divisible by } 576 . \]
\[\text{ Thus, P(m + 1) is true }  . \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n }  \in N . \] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 22 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×