Advertisements
Advertisements
प्रश्न
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
उत्तर
\[\text{ Let } : \]
\[P\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step } I \]
\[P(1): \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} (\text{ which is true } )\]
\[P(2): \left( \frac{a_2 - \sqrt{A}}{a_2 + \sqrt{A}} \right) = \left( \frac{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) - \sqrt{A}}{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) + \sqrt{A}} \right) = \left( \frac{a_1 + \frac{A}{a_1} - 2\sqrt{A}}{a_1 + \frac{A}{a_1} + 2\sqrt{A}} \right) = \left( \frac{a_1 + A - 2\sqrt{A}}{a_1 + A + 2\sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{2 - 1}} \]
\[\text{ Thus, P(1) and P(2) are true } . \]
\[\text{ Step } II \]
\[\text{ Let P(k) be true } . \]
\[\text{ Now, } \]
\[\frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} . . . . . (i)\]
\[\text{ and } \]
\[P(k + 1): \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}} = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\left( a_k + \frac{A}{a_k} \right) - 2\sqrt{A}}{\left( a_k + \frac{A}{a_k} \right) + 2\sqrt{A}}\]
\[ = \frac{\left( \sqrt{a_k} - \sqrt{\frac{A}{a_k}} \right)^2}{\left( \sqrt{a_k} + \sqrt{\frac{A}{a_k}} \right)^2}\]
\[ = \left( \frac{\sqrt{a_k} - \sqrt{\frac{A}{a_k}}}{\sqrt{a_k} + \sqrt{\frac{A}{a_k}}} \right)^2 \]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^\left( k + 1 \right) - 1} \]
\[\text{ Thus, P(k + 1) is also true .} \]
\[= \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}}}{\left( a_k + \sqrt{A} \right)^2} \left[ \text{ Using } (i) \right]\]
\[ = \frac{\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{\left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^\left( 2^{k - 1} + 1 \right) \]
\[ = \left( \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right)^\left( 2^{k - 1} + 1 \right) \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
Given an example of a statement P (n) such that it is true for all n ∈ N.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Prove by method of induction
`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀ "n" ∈ "N"`
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.
Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?