मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Prove, by method of induction, for all n ∈ N 13.4.5+24.5.6+35.6.7+...+n(n+2)(n+3)(n+4)=n(n+1)6(n+3)(n+4) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`

बेरीज

उत्तर

Let P(n) ≡ `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.

Step 1:

For n = 1, L.H.S. = `1/(3.4.5) = 1/60`

R.H.S. = `(1(1+1))/(6(1+3)(1+4))=2/(6(4)(5))=1/60`

∴ L.H.S. = R.H.S. for n = 1.

∴ P(1) is true.

Step 2: 

Let us assume that for some k ∈ N, P(k) is true,

i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) = ("k"("k" + 1))/(6("k" + 3)("k" + 4))` ...(1)

Step 3:

To prove that P(k + 1) is true, i.e., to prove that

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5)) = (("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`

Now, L.H.S. = `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))`

= `("k"("k" + 1))/(6("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))`  ...[By (1)]

= `("k" + 1)/(("k" + 3)("k" + 4))["k"/6  + 1/("k" + 5)]`

= `("k" + 1)/(("k" + 3)("k" + 4))[("k"^2 + 5"k" + 6)/(6("k" + 5))]`

= `("k" + 1)/(("k" + 3)("k" + 4)) xx (("k" + 2)("k" + 3))/(6("k" + 5))`

= `(("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`

= R.H.S.

∴ P(k + 1) is true.

Step 4:

From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,

i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Miscellaneous Exercise 4.2 [पृष्ठ ८५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Miscellaneous Exercise 4.2 | Q II. (1) (iv) | पृष्ठ ८५

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n(n + 1) is even", then what is P(3)?


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×