Advertisements
Advertisements
प्रश्न
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
उत्तर
Let P(n) ≡ `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.
Step 1:
For n = 1, L.H.S. = `1/(3.4.5) = 1/60`
R.H.S. = `(1(1+1))/(6(1+3)(1+4))=2/(6(4)(5))=1/60`
∴ L.H.S. = R.H.S. for n = 1.
∴ P(1) is true.
Step 2:
Let us assume that for some k ∈ N, P(k) is true,
i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) = ("k"("k" + 1))/(6("k" + 3)("k" + 4))` ...(1)
Step 3:
To prove that P(k + 1) is true, i.e., to prove that
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5)) = (("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`
Now, L.H.S. = `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "k"/(("k" + 2)("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))`
= `("k"("k" + 1))/(6("k" + 3)("k" + 4)) + ("k" + 1)/(("k" + 3)("k" + 4)("k" + 5))` ...[By (1)]
= `("k" + 1)/(("k" + 3)("k" + 4))["k"/6 + 1/("k" + 5)]`
= `("k" + 1)/(("k" + 3)("k" + 4))[("k"^2 + 5"k" + 6)/(6("k" + 5))]`
= `("k" + 1)/(("k" + 3)("k" + 4)) xx (("k" + 2)("k" + 3))/(6("k" + 5))`
= `(("k" + 1)("k" + 2))/(6("k" + 4)("k" + 5))`
= R.H.S.
∴ P(k + 1) is true.
Step 4:
From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,
i.e., `1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`, for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.