Advertisements
Advertisements
प्रश्न
उत्तर
Let P(n) be the given statement.
Now,
\[P(n): \frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n \text{ is a positive integer for all } n \in N . \]
\[\text{ Step } 1: \]
\[P(1) = \frac{1}{11} + \frac{1}{5} + \frac{1}{3} + \frac{62}{165} = \frac{15 + 33 + 55 + 62}{165} = \frac{165}{165} = 1 \]
\[\text{ It is certainly a positive integer } . \]
\[\text{ Hence, P(1) is true .} \]
\[\text{ Step2: } \]
\[\text{ Let P(m) be true .} \]
\[\text{ Then, } \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m \text{ is a positive integer . } \]
\[\text{ Now, let } \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m = \lambda, \text{ where } \lambda \in N\text{ is a positive integer . } \]
\[\text{ We have to show that P(m + 1) is true whenever P(m) is true } . \]
\[\text{ To prove: } \frac{(m + 1 )^{11}}{11} + \frac{(m + 1 )^5}{5} + \frac{(m + 1 )^3}{3} + \frac{62}{165}(m + 1)\text{ is a positive integer .} \]
\[\text{ Now, } \]
\[\frac{(m + 1 )^{11}}{11} + \frac{(m + 1 )^5}{5} + \frac{(m + 1 )^3}{3} + \frac{62}{165}(m + 1)\]
\[ = \frac{1}{11}\left( m^{11} + 11 m^{10} + 55 m^9 + 165 m^8 + 330 m^7 + 462 m^6 + 462 m^5 + 330 m^4 + 165 m^3 + 55 m^2 + 11m + 1 \right)\]
\[ + \frac{1}{5}\left( m^5 + 5 m^4 + 10 m^3 + 10 m^2 + 5m + 1 \right) + \frac{1}{3}\left( m^3 + 3 m^2 + 3m + 1 \right)\]
\[ + \frac{62}{165}m + \frac{62}{165}\]
\[ = \left[ \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m \right] + m^{10} + 5 m^9 + 15 m^8 + 30 m^7 + 42 m^6 + 42 m^5 + 31 m^4 + 17 m^3 + 8 m^2 + 3m + \frac{1}{11} + \frac{1}{5} + \frac{1}{3} + \frac{6}{105}\]
\[ = \lambda + m^{10} + 5 m^9 + 15 m^8 + 30 m^7 + 42 m^6 + 42 m^5 + 31 m^4 + 17 m^3 + 8 m^2 + 3m + 1\]
\[\text{ It is a positive integer } . \]
\[\text{ Thus, P(m + 1) is true } . \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
32n+7 is divisible by 8 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove by method of induction
`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀ "n" ∈ "N"`
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.