Advertisements
Advertisements
प्रश्न
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
उत्तर
\[\text{ Given: } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text { where } a > 0, A > 0 . \]
\[\text{ To prove: } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Proof: } \]
\[\text{ Let } p\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step I: For } n = 1, \]
\[LHS = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n } = 1 . \]
\[\text{ Step II: For n } = k, \]
\[\text{ Let } p\left( k \right): \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \text{ be true for some values of k } \geq 2 . \]
\[\text{ Step III: For } n = k + 1, \]
\[p\left( k + 1 \right): \]
\[LHS = \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{a_k} \right)}{\frac{1}{2}\left( \frac{{a_k}^2 + A + 2 a_k \sqrt{A}}{a_k} \right)}\]
\[ = \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{{a_k}^2 + A + 2 a_k \sqrt{A}}\]
\[ = \frac{\left( a_k - \sqrt{A} \right)^2}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \left( \text { Using step } II \right)\]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1} \times 2} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1 + 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k + 1 - 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n } = k + 1 . \]
\[\text{ Hence, } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?