Advertisements
Advertisements
Question
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
Solution
\[\text{ Given: } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text { where } a > 0, A > 0 . \]
\[\text{ To prove: } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Proof: } \]
\[\text{ Let } p\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step I: For } n = 1, \]
\[LHS = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n } = 1 . \]
\[\text{ Step II: For n } = k, \]
\[\text{ Let } p\left( k \right): \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \text{ be true for some values of k } \geq 2 . \]
\[\text{ Step III: For } n = k + 1, \]
\[p\left( k + 1 \right): \]
\[LHS = \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{a_k} \right)}{\frac{1}{2}\left( \frac{{a_k}^2 + A + 2 a_k \sqrt{A}}{a_k} \right)}\]
\[ = \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{{a_k}^2 + A + 2 a_k \sqrt{A}}\]
\[ = \frac{\left( a_k - \sqrt{A} \right)^2}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \left( \text { Using step } II \right)\]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1} \times 2} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1 + 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k + 1 - 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n } = k + 1 . \]
\[\text{ Hence, } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.