English

Given a 1 = 1 2 ( a 0 + a A 0 ) , a 2 = 1 2 ( a 1 + a A 1 ) and a N + 1 = 1 2 ( a N + a A N ) for N ≥ 2 , Where a > 0 , a > 0 . Prove a N − √ a A N + √ a = ( a 1 − √ a A 1 + √ a ) 2 N − 1 . - Mathematics

Advertisements
Advertisements

Question

\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]

Solution

\[\text{ Given: }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text { where } a > 0, A > 0 . \]
\[\text{ To prove: } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Proof: } \]
\[\text{ Let } p\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step   I: For }  n = 1, \]
\[LHS = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n }  = 1 . \]
\[\text{ Step II: For n } = k, \]
\[\text{ Let }  p\left( k \right): \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \text{ be true for some values of k }  \geq 2 . \]
\[\text{ Step III: For } n = k + 1, \]
\[p\left( k + 1 \right): \]
\[LHS = \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{a_k} \right)}{\frac{1}{2}\left( \frac{{a_k}^2 + A + 2 a_k \sqrt{A}}{a_k} \right)}\]
\[ = \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{{a_k}^2 + A + 2 a_k \sqrt{A}}\]
\[ = \frac{\left( a_k - \sqrt{A} \right)^2}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \left( \text { Using step }  II \right)\]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1} \times 2} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1 + 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k + 1 - 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n }  = k + 1 . \]
\[\text{ Hence, } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 42 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×