Advertisements
Advertisements
Question
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
Solution
Let P(n) be the given statement.
Now,
\[P(n) = \frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
\[\text{ Step } 1: \]
\[P(1) = \frac{1}{1 . 4} = \frac{1}{4} = \frac{1}{3 \times 1 + 1}\]
\[\text{ Hence, P(1) is true } . \]
\[Step 2: \]
\[\text{ Let P(m) be true} . \]
\[i . e . , \]
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + . . . + \frac{1}{(3m - 2)(3m + 1)} = \frac{m}{3m + 1}\]
\[\text{ To prove: P(m + 1) is true } . \]
\[i . e . , \]
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + . . . + \frac{1}{(3m + 1)(3m + 4)} = \frac{m + 1}{3m + 4}\]
\[\text{ Now, } \]
\[P(m) = \frac{1}{1 . 4} + \frac{1}{4 . 7} + . . . + \frac{1}{(3m - 2)(3m + 1)} = \frac{m}{3m + 1}\]
\[ \Rightarrow \frac{1}{1 . 4} + \frac{1}{4 . 7} + . . . + \frac{1}{(3m - 2)(3m + 1)} + \frac{1}{(3m + 1)(3m + 4)} = \frac{m}{3m + 1} + \frac{1}{(3m + 1)(3m + 4)} \left[ \text{ Adding } \frac{1}{(3m + 1)(3m + 4)} \text{ to both sides} \right]\]
\[ \Rightarrow \frac{1}{1 . 4} + \frac{1}{4 . 7} + . . . + \frac{1}{(3m + 1)(3m + 4)} = \frac{3 m^2 + 4m + 1}{(3m + 1)(3m + 4)} = \frac{(3m + 1)(m + 1)}{(3m + 1)(3m + 4)} = \frac{m + 1}{3m + 4}\]
\[\text{ Thus, P(m + 1) is true .} \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n} \in N .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
32n+7 is divisible by 8 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.