Advertisements
Advertisements
Question
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Solution
P(n) = 32n – 1 is divisible by 8.
So, substituting different values for n, we get,
P(0) = 30 – 1 = 0 which is divisible by 8.
P(1) = 32 – 1 = 8 which is divisible by 8.
P(2) = 34 – 1 = 80 which is divisible by 8.
P(3) = 36 – 1 = 728 which is divisible by 8.
Let P(k) = 32k – 1 be divisible by 8.
So, we get,
⇒ 32k – 1 = 8x
Now, we also get that,
⇒ P(k + 1) = `3^(2("k" + 1))` – 1
= 32(8x + 1) – 1
= 72x + 8 is divisible by 8.
⇒ P(k + 1) is true when P(k) is true.
Therefore, by Mathematical Induction, P(n) = 32n – 1 is divisible by 8, for all natural numbers n.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
32n+7 is divisible by 8 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.