English

12 + 32 + 52 + ... + (2n − 1)2 = 1 3 N ( 4 N 2 − 1 ) - Mathematics

Advertisements
Advertisements

Question

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

Solution

Let P(n) be the given statement.
Now,

\[P(n) = 1^2 + 3^2 + 5^2 + . . . + (2n - 1 )^2 = \frac{1}{3}n(4 n^2 - 1)\]

\[\text{ Step 1:}  \]

\[P(1) = 1^2 = 1 = \frac{1}{3} \times 1 \times (4 - 1)\]

\[\text{ Hence, P(1) is true }  . \]

\[\text{ Step 2: }  \]

\[\text{ Let P(m) be true } . \]

\[\text{ Then, } \]

\[ 1^2 + 3^2 + . . . + (2m - 1 )^2 = \frac{1}{3}m(4 m^2 - 1)\]

\[\text{ To prove: P(m + 1) is true whenever P(m) is true } . \]

\[\text{ That is, }  \]

\[ 1^2 + 3^2 = . . . + (2m + 1 )^2 = \frac{1}{3}(m + 1)\left\{ 4(m + 1 )^2 - 1 \right\}\]

\[\text{ We know that P(m) is true } . \]

\[\text{ Thus, we have: } \]

\[ 1^2 + 3^2 + . . . + (2m - 1 )^2 = \frac{1}{3}m(4 m^2 - 1)\]

\[ \Rightarrow 1^2 + 3^2 + . . . + (2m - 1 )^2 + (2m + 1 )^2 = \frac{1}{3}m(4 m^2 - 1) + (2m + 1 )^2 \left[ \text{ Adding } (2m + 1 )^2 \text{ to both sides } \right]\]

\[ \Rightarrow P(m + 1) = \frac{1}{3}\left( 4 m^3 - m + 12 m^2 + 12m + 3 \right)\]

\[ \Rightarrow P(m + 1) = \frac{1}{3}(4 m^3 - m + 8 m^2 + 4m + 4 m^2 + 8m + 3)\]

\[ = \frac{1}{3}(m + 1)(4 m^2 + 8m + 3) \]

\[ = \frac{1}{3}(m + 1)(4(m + 1 )^2 - 1)\]

\[\text{ Thus, P(m + 1) is true }  . \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 16 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

32n+7 is divisible by 8 for all n ∈ N.

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×