English

The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2. Use this law and mathematical induction to prove that, for all natural numbers - Mathematics

Advertisements
Advertisements

Question

The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.

Sum

Solution

Let P(n) be the given statement

i.e., P(n) : c(a1 + a2 + ... + an) = ca1 + ca2 + ... can for all natural numbers n ≥ 2, for c, a1, a2, ... an ∈ R.

We observe that P(2) is true.

Since c(a1 + a2) = ca1 + ca2   ......(By distributive law)

Assume that P(n) is true for some natural number k

Where k > 2,

i.e., P(k) : c(a1 + a2 + ... + ak) = ca1 + ca2 + ... + cak

Now to prove P(k + 1) is true.

We have P(k + 1): c(a1 + a2 + ... + ak + ak + 1)

= c((a1 + a2 + ... + ak) + ak + 1)

= c(a1 + a2 + ... + ak) + cak+1    ........(By Distributive law)

= ca1 + ca2 + ... + cak + cak + 1

Thus P(k + 1) is true.

Whenever P(k) is true.

Hence, by the principle of Mathematical Induction, P(n) is true for all natural numbers n ≥ 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Solved Examples [Page 65]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Solved Examples | Q 7 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

32n+7 is divisible by 8 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


(ab)n = anbn for all n ∈ N. 

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×