English

Given a 1 = 1 2 ( a 0 + a A 0 ) , a 2 = 1 2 ( a 1 + a A 1 ) and a N + 1 = 1 2 ( a N + a A N ) for N ≥ 2, Where a > 0, a > 0. Prove that a N − √ a A N + √ a = ( a 1 − √ a A 1 + √ a ) 2 N − 1 - Mathematics

Advertisements
Advertisements

Question

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

Solution

\[\text{ Let } : \]
\[P\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step } I \]
\[P(1): \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} (\text{ which is true } )\]
\[P(2): \left( \frac{a_2 - \sqrt{A}}{a_2 + \sqrt{A}} \right) = \left( \frac{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) - \sqrt{A}}{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) + \sqrt{A}} \right) = \left( \frac{a_1 + \frac{A}{a_1} - 2\sqrt{A}}{a_1 + \frac{A}{a_1} + 2\sqrt{A}} \right) = \left( \frac{a_1 + A - 2\sqrt{A}}{a_1 + A + 2\sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{2 - 1}} \]
\[\text{ Thus, P(1) and P(2) are true }  . \]
\[\text{ Step } II \]
\[\text{ Let P(k) be true }  . \]
\[\text{ Now, }  \]
\[\frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} . . . . . (i)\]
\[\text{ and } \]
\[P(k + 1): \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}} = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\left( a_k + \frac{A}{a_k} \right) - 2\sqrt{A}}{\left( a_k + \frac{A}{a_k} \right) + 2\sqrt{A}}\]
\[ = \frac{\left( \sqrt{a_k} - \sqrt{\frac{A}{a_k}} \right)^2}{\left( \sqrt{a_k} + \sqrt{\frac{A}{a_k}} \right)^2}\]
\[ = \left( \frac{\sqrt{a_k} - \sqrt{\frac{A}{a_k}}}{\sqrt{a_k} + \sqrt{\frac{A}{a_k}}} \right)^2 \]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^\left( k + 1 \right) - 1} \]
\[\text{ Thus, P(k + 1) is also true .}  \]

\[= \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}}}{\left( a_k + \sqrt{A} \right)^2} \left[ \text{ Using }  (i) \right]\]
\[ = \frac{\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{\left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^\left( 2^{k - 1} + 1 \right) \]
\[ = \left( \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right)^\left( 2^{k - 1} + 1 \right) \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 28 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+7 is divisible by 8 for all n ∈ N.

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×