Advertisements
Advertisements
Question
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Solution
\[\text{ Let } : \]
\[P\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step } I \]
\[P(1): \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} (\text{ which is true } )\]
\[P(2): \left( \frac{a_2 - \sqrt{A}}{a_2 + \sqrt{A}} \right) = \left( \frac{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) - \sqrt{A}}{\frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) + \sqrt{A}} \right) = \left( \frac{a_1 + \frac{A}{a_1} - 2\sqrt{A}}{a_1 + \frac{A}{a_1} + 2\sqrt{A}} \right) = \left( \frac{a_1 + A - 2\sqrt{A}}{a_1 + A + 2\sqrt{A}} \right) = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{2 - 1}} \]
\[\text{ Thus, P(1) and P(2) are true } . \]
\[\text{ Step } II \]
\[\text{ Let P(k) be true } . \]
\[\text{ Now, } \]
\[\frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} . . . . . (i)\]
\[\text{ and } \]
\[P(k + 1): \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}} = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\left( a_k + \frac{A}{a_k} \right) - 2\sqrt{A}}{\left( a_k + \frac{A}{a_k} \right) + 2\sqrt{A}}\]
\[ = \frac{\left( \sqrt{a_k} - \sqrt{\frac{A}{a_k}} \right)^2}{\left( \sqrt{a_k} + \sqrt{\frac{A}{a_k}} \right)^2}\]
\[ = \left( \frac{\sqrt{a_k} - \sqrt{\frac{A}{a_k}}}{\sqrt{a_k} + \sqrt{\frac{A}{a_k}}} \right)^2 \]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^\left( k + 1 \right) - 1} \]
\[\text{ Thus, P(k + 1) is also true .} \]
\[= \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{a_k \left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} - \sqrt{A}\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}}}{\left( a_k + \sqrt{A} \right)^2} \left[ \text{ Using } (i) \right]\]
\[ = \frac{\left( a_k + \sqrt{A} \right) \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \frac{\left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( a_k - \sqrt{A} \right)}{\left( a_k + \sqrt{A} \right)}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^{2^{k - 1}} \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^\left( 2^{k - 1} + 1 \right) \]
\[ = \left( \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right)^\left( 2^{k - 1} + 1 \right) \]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
32n+7 is divisible by 8 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
3 + 7 + 11 + ..... + to n terms = n(2n+1)
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.