English

1.3 + 2.4 + 3.5 + ... + N. (N + 2) = 1 6 N ( N + 1 ) ( 2 N + 7 ) - Mathematics

Advertisements
Advertisements

Question

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

Solution

Let P(n) be the given statement.
Now, 

\[P(n) = 1 . 3 + 2 . 4 + 3 . 5 + . . . + n . (n + 2) = \frac{1}{6}n(n + 1)(2n + 7)\]

\[\text{ Step } 1: \]

\[P(1) = 1 . 3 = 3 = \frac{1}{6} \times 1(1 + 1)(2 \times 1 + 7)\]

\[\text{ Hence, P(1) is true }  . \]

\[\text{ Step 2:}  \]

\[\text{ Let P(m) be true . } \]

\[\text{ Then, } \]

\[1 . 3 + 2 . 4 + . . . + m . (m + 2) = \frac{1}{6}m(m + 1)(2m + 7)\]

\[\text{ To prove: P(m + 1) is true . } \]

\[\text{ That is, } \]

\[1 . 3 + 2 . 4 + . . . + (m + 1)(m + 3) = \frac{1}{6}(m + 1)(m + 2)(2m + 9)\]

\[P(m) \text{ is equal to }  1 . 3 + 2 . 4 + . . . + m(m + 2) = \frac{1}{6}m(m + 1)(2m + 7) . \]

\[\text{ Thus, we have: }  \]

\[1 . 3 + 2 . 4 + . . . + m(m + 2) + (m + 1)(m + 3) = \frac{1}{6}m(m + 1)(2m + 7) + (m + 1)(m + 3) \left[ \text{ Adding } (m + 1)(m + 3)\text{  to both sides } \right]\]

\[ \Rightarrow 1 . 3 + 2 . 4 + . . . + (m + 1)(m + 3) = \frac{1}{6}(m + 1)\left[ 2 m^2 + 7m + 6m + 18 \right]\]

\[ = \frac{1}{6}(m + 1)(2 m^2 + 13m + 18)\]

\[ = \frac{1}{6}(m + 1)(2m + 9)(m + 2)\]

\[\text{ Thus, P(m + 1) is true .}  \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n }  \in N .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 12 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×