Advertisements
Advertisements
Question
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
Solution
Let P(n) be the given statement.
Now,
\[P(n) = 1 . 3 + 3 . 5 + 5 . 7 + . . . + (2n - 1)(2n + 1) = \frac{n(4 n^2 + 6n - 1)}{3}\]
\[\text{ Step } 1: \]
\[P(1) = 1 . 3 = 3 = \frac{1(4 \times \left( 1 \right)^2 + 6 \times 1 - 1)}{3}\]
\[\text{ Hence, P(1) is true } . \]
\[\text{ Step 2: } \]
\[\text{ Let P(m) be true} . \]
\[\text{ Then,} \]
\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]
\[\text{ To prove: P(m + 1) is true} . \]
\[\text{ That is, } \]
\[1 . 3 + 3 . 5 + . . . + (2m + 1)(2m + 3) = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]
\[ \text{ Now, P(m) is equal to: } \]
\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]
\[ \Rightarrow 1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) + (2m + 1)(2m + 3) = \frac{m(4 m^2 + 6m - 1)}{3} + (2m + 1)(2m + 3) \left[ \text{ Adding } (2m + 1)(2m + 3) \text{ to both sides } \right]\]
\[ \Rightarrow P(m + 1) = \frac{m(4 m^2 + 6m - 1) + 3(4 m^2 + 8m + 3)}{3}\]
\[ \Rightarrow P(m + 1) = \frac{4 m^3 + 6 m^2 - m + 12 m^2 + 24m + 9}{3} = \frac{4 m^3 + 18 m^2 + 23m + 9}{3}\]
\[ \Rightarrow P(m + 1) = \frac{4m( m^2 + 2m + 1) + 10 m^2 + 19m + 9}{3}\]
\[ = \frac{4m(m + 1 )^2 + (10m + 9)(m + 1)}{3}\]
\[ = \frac{(m + 1)\left[ 4m(m + 1) + 10m + 9 \right]}{3}\]
\[ = \frac{(m + 1)}{3}(4 m^2 + 8m + 4 + 6m + 5)\]
\[ = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]
\[\text{ Thus, P(m + 1) is true .} \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n} \in N .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
By using principle of mathematical induction for every natural number, (ab)n = ______.