English

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) = N ( 4 N 2 + 6 N − 1 ) 3 - Mathematics

Advertisements
Advertisements

Question

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

Solution

Let P(n) be the given statement.
Now,

\[P(n) = 1 . 3 + 3 . 5 + 5 . 7 + . . . + (2n - 1)(2n + 1) = \frac{n(4 n^2 + 6n - 1)}{3}\]

\[\text{ Step }  1: \]

\[P(1) = 1 . 3 = 3 = \frac{1(4 \times \left( 1 \right)^2 + 6 \times 1 - 1)}{3}\]

\[\text{ Hence, P(1) is true }  . \]

\[\text{ Step 2: }  \]

\[\text{ Let P(m) be true} . \]

\[\text{ Then,}  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[\text{ To prove: P(m + 1) is true}  . \]

\[\text{ That is, }  \]

\[1 . 3 + 3 . 5 + . . . + (2m + 1)(2m + 3) = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[ \text{ Now, P(m) is equal to: }  \]

\[1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) = \frac{m(4 m^2 + 6m - 1)}{3}\]

\[ \Rightarrow 1 . 3 + 3 . 5 + . . . + (2m - 1)(2m + 1) + (2m + 1)(2m + 3) = \frac{m(4 m^2 + 6m - 1)}{3} + (2m + 1)(2m + 3) \left[ \text{ Adding } (2m + 1)(2m + 3) \text{ to both sides }  \right]\]

\[ \Rightarrow P(m + 1) = \frac{m(4 m^2 + 6m - 1) + 3(4 m^2 + 8m + 3)}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4 m^3 + 6 m^2 - m + 12 m^2 + 24m + 9}{3} = \frac{4 m^3 + 18 m^2 + 23m + 9}{3}\]

\[ \Rightarrow P(m + 1) = \frac{4m( m^2 + 2m + 1) + 10 m^2 + 19m + 9}{3}\]

\[ = \frac{4m(m + 1 )^2 + (10m + 9)(m + 1)}{3}\]

\[ = \frac{(m + 1)\left[ 4m(m + 1) + 10m + 9 \right]}{3}\]

\[ = \frac{(m + 1)}{3}(4 m^2 + 8m + 4 + 6m + 5)\]

\[ = \frac{(m + 1)\left[ 4(m + 1 )^2 + 6\left( m + 1 \right) - 1 \right]}{3}\]

\[\text{ Thus, P(m + 1) is true .}  \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n}  \in N .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 13 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×