English

Show by the Principle of Mathematical induction that the sum Sn of then terms of the series 1 2 + 2 × 2 2 + 3 2 + 2 × 4 2 + 5 2 + 2 × 6 2 + 7 2 + . . . is given by - Mathematics

Advertisements
Advertisements

Question

Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 

Solution

\[ \text{ Let } P\left( n \right): S_n = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ when n is even } }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ when n is odd} }\]
\[\text{ Step I: For } n = 1 i . e . P\left( 1 \right): \]
\[LHS = S_1 = 1^2 = 1\]
\[RHS = S_1 = \frac{1^2 \left( 1 + 1 \right)}{2} = 1\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n }  = 1 . \]
\[ \text{ Step II: For n }  = k, \]
\[\text{ Let } P\left( k \right): S_k = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . = \binom{\frac{k \left( k + 1 \right)^2}{2}, \text{ when k is even} }{\frac{k^2 \left( k + 1 \right)}{2}, \text{ when k is odd }}, \text{ be true for some natural numbers } . \]
\[\text{ Step III: For }  n = k + 1, \]
\[\text{ Case 1: When k is odd, then } \left( k + 1 \right) \text{ is even .}  \]
\[P\left( k + 1 \right): \]
\[LHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + k^2 + 2 \times \left( k + 1 \right)^2 \]
\[ = \frac{k^2 \left( k + 1 \right)}{2} + 2 \times \left( k + 1 \right)^2 \left( \text{ Using step }  II \right)\]
\[ = \frac{k^2 \left( k + 1 \right) + 4 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)\left( k^2 + 4k + 4 \right)}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[RHS = \frac{\left( k + 1 \right) \left( k + 1 + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right) \left( k + 2 \right)^2}{2}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n = k + 1 when k is odd .}  \]
\[\text{ Case 2: When k is even, then }  \left( k + 1 \right) \text{ is odd .}  \]
\[P\left( k + 1 \right): \]
\[RHS = S_{k + 1} = 1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + . . . + 2 \times k^2 + \left( k + 1 \right)^2 \]
\[ = \frac{k \left( k + 1 \right)^2}{2} + \left( k + 1 \right)^2 \left( \text{ Using step } II \right)\]
\[ = \frac{k \left( k + 1 \right)^2 + 2 \left( k + 1 \right)^2}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[RHS = \frac{\left( k + 1 \right)^2 \left( k + 1 + 1 \right)}{2}\]
\[ = \frac{\left( k + 1 \right)^2 \left( k + 2 \right)}{2}\]
\[As, LHS = RHS\]
\[\text{ So, it is true for n = k + 1 when k is even }  . \]
\[\text{ Hence, } P\left( n \right) \text{ is true for all natural numbers .}  \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 44 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

(ab)n = anbn for all n ∈ N. 

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×