English

Prove by method of induction, for all n ∈ N: 5 + 52 + 53 + .... + 5n = 54(5n-1) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`

Sum

Solution

Let P(n) ≡ 5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`, for all n ∈ N

Step I:

Put n = 1

L.H.S. = 5

R.H.S. = `5/4(5^1 - 1)` = 5 = L.H.S.

∴ P(n) is true for n = 1.

Step II:

Let us consider that P(n) is true for n = k.

∴ 5 + 52 + 53 + …. + 5k = `5/4(5^"k" - 1)`   ...(i)

Step III:

We have to prove that P(n) is true for n = k + 1 i.e., to prove that

5 + 52 + 53 + …. + 5k+1 = `5/4(5^("k"+1) - 1)`

L.H.S. = 5 + 52 + 53 + …. + 5k+1 

= 5 + 52 + 53 + …. + 5k + 5k+1 

= `5/4(5^"k" - 1) + 5^("k"+1)`   ...[From (i)]

= `(5.5^"k" - 5 + 4.5^("k"+1))/4`

= `(5^("k"+1) + 4.5^("k"+1) - 5)/4`

= `(5.5^("k"+1) - 5)/4`

= `5/4(5^("k" + 1) - 1)`

= R.H.S.

∴ P(n) is true for n = k + 1

Step IV:

From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.

∴ 5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`, for all n ∈ N.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [Page 74]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 13 | Page 74

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


State whether the following statement is true or false. Justify.

Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×