Advertisements
Advertisements
Question
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Solution
Let P(n): cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`
Step 1: P(1): cos α = `((cos alpha)(sin beta/2))/(sin beta/2)` = cos α
Step 2: P(k): cos α + cos(α + β) + cos(α + 2β) + ... + cos[α + (k – 1)β]
= `(cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2))/(sin beta/2)`. Let it be true.
Step 3: P(k + 1): cos α + cos(α + β) + cos(α + 2β) + ... + cos[α + (k – 1)β] + cos[α + (k + 1 – 1)β]
= `(cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2))/(sin beta/2) + cos(alpha + kbeta)` ......(From Step 2)
= `(2cos[alpha + ((k - 1)/2)beta]sin((kbeta)/2) + 2cos(alpha + kbeta).sin beta/2)/(2 sin beta/2)`
= `(sin[alpha + kbeta - beta/2] - sin[alpha - beta/2] + sin[alpha + kbeta + beta/2] - sin[alpha + kbeta - beta/2])/(2sin beta/2)` ......[∵ 2 cosA sinB = sin(A + B) – sin(A – B)]
= `(sin[alpha + kbeta + beta/2] - sin(alpha - beta/2))/(2sin beta/2)`
= `(2cos(alpha + (kbeta)/2) sin(k + 1) beta/2)/(2sin beta/2)` ......`[because sin"A" - sin"B" = 2cos ("A" + "B")/2 . sin ("A" - "B")/2]`
= `(cos(alpha + (kbeta)/2).sin(k + 1) beta/2)/(sin beta/2)`
= `(cos[alpha + ((k + 1 - 1)/2)beta] sin((k + 1)/2)beta)/(sin beta/2)` which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Given an example of a statement P (n) such that it is true for all n ∈ N.
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
32n+7 is divisible by 8 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.