English

1 3 . 7 + 1 7 . 11 + 1 11 . 5 + . . . + 1 ( 4 N − 1 ) ( 4 N + 3 ) = N 3 ( 4 N + 3 ) - Mathematics

Advertisements
Advertisements

Question

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 

Solution

Let P(n) be the given statement.
Now,

\[P(n) = \frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 15} + . . . + \frac{{}^1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]

\[\text{ Step}  1: \]

\[P(1) = \frac{1}{3 . 7} = \frac{1}{21} = \frac{1}{3(4 + 3)}\]

\[\text{ Hence, P(1) is true } . \]

\[\text{ Step } 2: \]

\[\text{ Let P(m) is true}  . \]

\[\text{ Then} , \]

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + . . . + \frac{1}{(4m - 1)(4m + 3)} = \frac{m}{3(4m + 3)}\]

\[\text{ To prove: P(m + 1) is true .}  \]

\[\text{ That is} , \]

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + . . . + \frac{1}{(4m + 3)(4m + 7)} = \frac{m + 1}{3(4m + 7)}\]

\[Now, \]

\[P(m) = \frac{1}{3 . 7} + \frac{1}{7 . 11} + . . . + \frac{1}{(4m - 1)(4m + 3)} = \frac{m}{3(4m + 3)}\]

\[ \Rightarrow \frac{1}{3 . 7} + \frac{1}{7 . 11} + . . . + \frac{1}{(4m - 1)(4m + 3)} + \frac{1}{(4m + 3)(4m + 7)} = \frac{m}{3(4m + 3)} + \frac{1}{(4m + 3)(4m + 7)} \left[ \text{ Adding } \frac{1}{(4m + 3)(4m + 7)} \text{ to both sides }  \right]\]

\[ \Rightarrow \frac{1}{3 . 7} + \frac{1}{7 . 11} + . . . + \frac{1}{(4m + 3)(4m + 7)} = \frac{4 m^2 + 7m + 3}{3(4m + 3)(4m + 7)} = \frac{(4m + 3)(m + 1)}{3(4m + 3)(4m + 7)} = \frac{m + 1}{3(4m + 7)}\]

\[\text{ Thus, P(m + 1) is true }  . \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 9 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n −1 is divisible by 24 for all n ∈ N.


52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×