English

12 + 22 + 32 + ... + N2 = N ( N + 1 ) ( 2 N + 1 ) 6 . - Mathematics

Advertisements
Advertisements

Question

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

Solution

Let P(n) be the given statement.
Now,

\[P(n) = 1^2 + 2^2 + 3^2 + . . . + n^2 = \frac{n(n + 1)(2n + 1)}{6}\]

\[\text{ Step } 1: \]

\[P(1) = 1^2 = \frac{1(1 + 1)(2 + 1)}{6} = \frac{6}{6} = 1\]

\[\text{ Hence, P(1) is true}  . \]

\[\text{ Step } 2: \]

\[\text{ Let P(m) be true .}  \]

\[\text{ Then,}  \]

\[ 1^2 + 2^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]

\[\text{ We shall now prove that P(m + 1) is true}  . \]

\[i . e . , \]

\[ 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]

\[ \text{ Now } , \]

\[P(m) = 1^2 + 2^2 + 3^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]

\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + m^2 + (m + 1 )^2 = \frac{m(m + 1)(2m + 1)}{6} + (m + 1 )^2 \left[ \text{ Adding}  (m + 1 )^2 \text{ to both sides}  \right]\]

\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{m(m + 1)(2m + 1) + 6(m + 1 )^2}{6} = \frac{(m + 1)(2 m^2 + m + 6m + 6)}{6} = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]

\[\text{ Hence, P(m + 1) is true } . \]

\[\text{ By the principle of mathematical induction, the given statement is true for all n } \in N .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 2 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nn (n + 1) (n + 5) is a multiple of 3.


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

52n −1 is divisible by 24 for all n ∈ N.


Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×