Advertisements
Advertisements
Question
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
Solution
Let P(n) be the given statement.
Now,
\[P(n) = 1^2 + 2^2 + 3^2 + . . . + n^2 = \frac{n(n + 1)(2n + 1)}{6}\]
\[\text{ Step } 1: \]
\[P(1) = 1^2 = \frac{1(1 + 1)(2 + 1)}{6} = \frac{6}{6} = 1\]
\[\text{ Hence, P(1) is true} . \]
\[\text{ Step } 2: \]
\[\text{ Let P(m) be true .} \]
\[\text{ Then,} \]
\[ 1^2 + 2^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]
\[\text{ We shall now prove that P(m + 1) is true} . \]
\[i . e . , \]
\[ 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]
\[ \text{ Now } , \]
\[P(m) = 1^2 + 2^2 + 3^2 + . . . + m^2 = \frac{m(m + 1)(2m + 1)}{6}\]
\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + m^2 + (m + 1 )^2 = \frac{m(m + 1)(2m + 1)}{6} + (m + 1 )^2 \left[ \text{ Adding} (m + 1 )^2 \text{ to both sides} \right]\]
\[ \Rightarrow 1^2 + 2^2 + 3^2 + . . . + (m + 1 )^2 = \frac{m(m + 1)(2m + 1) + 6(m + 1 )^2}{6} = \frac{(m + 1)(2 m^2 + m + 6m + 6)}{6} = \frac{(m + 1)(m + 2)(2m + 3)}{6}\]
\[\text{ Hence, P(m + 1) is true } . \]
\[\text{ By the principle of mathematical induction, the given statement is true for all n } \in N .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
Given an example of a statement P (n) such that it is true for all n ∈ N.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
52n −1 is divisible by 24 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
2 + 4 + 6 + ..... + 2n = n (n+1)
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?