Advertisements
Advertisements
Question
Prove by method of induction, for all n ∈ N:
`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`
Solution
Let P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`, for all n ∈ N
But the first factor in each term of the denominator
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n + 1)
Also, second factor in each term of denominator
i.e., 5, 7, 9, … are in A.P. with a = 5 and d = 2.
∴ nth term = a + (n – 1)d = 5 + (n – 1)2 = (2n + 3)
∴ nth term tn = `1/((2"n" + 1)(2"n" + 3))`
∴ P(n) ≡ `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"n" + 1)(2"n" + 3)) = "n"/(3(2"n" + 3))`
Step I:
Put n = 1
L.H.S. = `1/(3.5) = 1/15`
R.H.S. = `1/(3[2(1) + 3]) = 1/(3(2 + 3)) = 1/15` = L.H.S.
∴ P(n) is true for n = 1
Step II:
Let us consider that P(n) is true for n = k
∴ `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 1).(2"k" + 3)) = "k"/(3(2"k" + 3))` ...(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
`1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 3).(2"k" + 5)) = ("k" + 1)/(3(2"k" + 5))`
L.H.S. = `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 3)(2"k" + 5))`
= `1/(3.5) + 1/(5.7) + 1/(7.9) + ... + 1/((2"k" + 1)(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))`
= `"k"/(3(2"k" + 3)) + 1/((2"k" + 3)(2"k" + 5))` ...[From (i)]
= `("k"(2"k" + 5) + 3)/(3(2"k" + 3)(2"k" + 5))`
= `(2"k"^2 + 5"k" + 3)/(3(2"k" + 3)(2"k" + 5))`
= `(2"k"^2 + 2"k" + 3"k" + 3)/(3(2"k" + 3)(2"k" + 5)`
= `(2"k"("k" + 1) + 3("k" + 1))/(3(2"k" + 3)(2"k" + 5))`
= `((2"k" + 3)("k" + 1))/(3("2k" + 3)(2"k" + 5))`
= `("k" + 1)/(3(2"k" + 5))`
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ `1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))` for all n ∈ N.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.
1 + 2 + 3 + ... + n = \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Show by the Principle of Mathematical induction that the sum Sn of then terms of the series \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
\[\text{ The distributive law from algebra states that for all real numbers} c, a_1 \text{ and } a_2 , \text{ we have } c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
State whether the following proof (by mathematical induction) is true or false for the statement.
P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`
Proof By the Principle of Mathematical induction, P(n) is true for n = 1,
12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that
(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.