Advertisements
Advertisements
Question
Solution
We need to prove \[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ N and \[0 < x < \frac{\pi}{2}\] using mathematical induction.
For n = 1,
LHS = \[\frac{1}{2}\tan\frac{x}{2}\] and
\[RHS = \frac{1}{2}\cot\frac{x}{2} - \cot x = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\tan x}\]
\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}}}\]
\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1 - \tan^2 \frac{x}{2}}{2 \tan\frac{x}{2}} = \frac{1 - 1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2}} = \frac{\tan\frac{x}{2}}{2}\]
Therefore, the given relation is true for n = 1.
Now, let the given relation be true for n = k.
We need to prove that the given relation is true for n = k + 1.
\[\Rightarrow L = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \tan\left( \frac{x}{2^k} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \tan2\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \times \frac{2\tan\left( \frac{x}{2^{k + 1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[\Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right) + \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} - \cot x = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
Now,
\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^k}\tan\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
Thus,
\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ N and \[0 < x < \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3.
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
32n+7 is divisible by 8 for all n ∈ N.
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Prove by method of induction, for all n ∈ N:
(23n − 1) is divisible by 7
Prove by method of induction, for all n ∈ N:
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
By using principle of mathematical induction for every natural number, (ab)n = ______.