Advertisements
Advertisements
Question
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
Solution
Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ
= `(sin (ntheta)/2 . sin ((n + 1))/2 theta)/(sin theta/2)`, n ∈ N.
Step 1: P(1) : sinθ = `(sin theta/2 . sin ((1 + 1)/2)theta)/(sin theta/2)`
= `(sin theta/2 . sin theta)/(sin theta/2)`
= sinθ
∴ sinθ = sinθ which is true for P(1).
Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2)`
Let it be true for P(k).
Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta)/(sin theta/2) + sin(k + 1)theta`
= `(sin (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin theta/2)/(sin theta/2)`
= `(2sin (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin theta/2)/(2 sin theta/2)`
= `(cos((ktheta)/2 - (k + 1)/2 theta) - cos((ktheta)/2 + (k + 1)/2 theta) + cos[(k + 1)theta - theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin theta/2)`
= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin ((theta/2 - ktheta - (3theta)/2)/2))/(2sin theta/2)` ......`[because cos"A" - cos"B" = - 2sin (("A" + "B"))/2 sin (("A" - "B"))/2]`
= `(-2sin((ktheta + 2theta)/2) . sin ((-ktheta - theta)/2))/(2sin theta/2)`
= `(sin((ktheta + 2theta)/2).sin ((ktheta + theta)/2))/(sin theta/2)`
= `(sin[((k + 1) - 1)/2]theta.sin [(k + 1)/2]theta)/(sin theta/2)` which is true for P(k + 1).
Hence, P(k + 1) is true whenever P(k) is true.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`
Given an example of a statement P (n) such that it is true for all n ∈ N.
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
1.2 + 2.22 + 3.23 + ... + n.2n = (n − 1) 2n+1+2
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
52n −1 is divisible by 24 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]
\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{ is true for all n } \in N?\]
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.