English

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = sinnθ2sin (n+1)2θsin θ2, for all n ∈ N. - Mathematics

Advertisements
Advertisements

Question

Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.

Sum

Solution

Let P(n): sinθ + sin2θ + sin3θ + ... + sinnθ

= `(sin  (ntheta)/2 . sin  ((n + 1))/2 theta)/(sin  theta/2)`, n ∈ N.

Step 1: P(1) : sinθ = `(sin  theta/2 . sin ((1 + 1)/2)theta)/(sin  theta/2)`

= `(sin  theta/2 . sin theta)/(sin  theta/2)`

= sinθ 

∴ sinθ = sinθ which is true for P(1).

Step 2: P(k): sinθ + sin2θ + sin3θ + ... + sinkθ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2)`

Let it be true for P(k).

Step 3: P(k + 1): sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta)/(sin  theta/2) + sin(k + 1)theta`

= `(sin  (ktheta)/2 . sin ((k + 1)/2)theta + sin(k + 1)theta . sin  theta/2)/(sin  theta/2)`

= `(2sin  (ktheta)/2 . sin ((k + 1)/2)theta + 2 sin (k + 1)theta . sin  theta/2)/(2 sin  theta/2)`

= `(cos((ktheta)/2 - (k + 1)/2  theta) - cos((ktheta)/2 + (k + 1)/2  theta) + cos[(k + 1)theta -  theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin  theta/2)`

= `(cos(- theta/2) - cos(ktheta + theta/2) + cos(ktheta + theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin  theta/2)`

= `(-2sin((theta/2 + ktheta + (3theta)/2)/2).sin  ((theta/2 - ktheta - (3theta)/2)/2))/(2sin  theta/2)`   ......`[because cos"A" - cos"B" = - 2sin  (("A" + "B"))/2 sin  (("A" - "B"))/2]`

= `(-2sin((ktheta + 2theta)/2) . sin  ((-ktheta - theta)/2))/(2sin  theta/2)`

= `(sin((ktheta + 2theta)/2).sin  ((ktheta + theta)/2))/(sin  theta/2)`

= `(sin[((k + 1) - 1)/2]theta.sin  [(k + 1)/2]theta)/(sin  theta/2)` which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Exercise [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Exercise | Q 22 | Page 71

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Given an example of a statement P (n) such that it is true for all n ∈ N.

 

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n −1 is divisible by 24 for all n ∈ N.


32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×