हिंदी

1 2 Tan ( X 2 ) + 1 4 Tan ( X 4 ) + . . . + 1 2 N Tan ( X 2 N ) = 1 2 N Cot ( X 2 N ) − Cot X for All N ∈ N and 0 < X < π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 

उत्तर

We need to prove \[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and \[0 < x < \frac{\pi}{2}\]  using mathematical induction.
For n = 1,
LHS = \[\frac{1}{2}\tan\frac{x}{2}\] and 

\[RHS = \frac{1}{2}\cot\frac{x}{2} - \cot x = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\tan x}\]

\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}}}\]

\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1 - \tan^2 \frac{x}{2}}{2 \tan\frac{x}{2}} = \frac{1 - 1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2}} = \frac{\tan\frac{x}{2}}{2}\]

Therefore, the given relation is true for n = 1.

Now, let the given relation be true for n = k.

We need to prove that the given relation is true for n = k + 1.

\[\therefore \frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^k}\tan\left( \frac{x}{2^k} \right) = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) - \cot x\] 
Now, \[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^k}\tan\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) - \cot x + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right)\]
Let:  \[L = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) - \cot x + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right)\]

\[\Rightarrow L = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

\[ \Rightarrow L = \frac{1}{2^k \tan\left( \frac{x}{2^k} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

\[ \Rightarrow L = \frac{1}{2^k \tan2\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

\[ \Rightarrow L = \frac{1}{2^k \times \frac{2\tan\left( \frac{x}{2^{k + 1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

\[ \Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

\[\Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right) + \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} - \cot x = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

Now,

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^k}\tan\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]

Thus,

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\] 

 

  
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 34 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×