Advertisements
Advertisements
प्रश्न
उत्तर
We need to prove \[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ N and \[0 < x < \frac{\pi}{2}\] using mathematical induction.
For n = 1,
LHS = \[\frac{1}{2}\tan\frac{x}{2}\] and
\[RHS = \frac{1}{2}\cot\frac{x}{2} - \cot x = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\tan x}\]
\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1}{\frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}}}\]
\[ \Rightarrow RHS = \frac{1}{2\tan\frac{x}{2}} - \frac{1 - \tan^2 \frac{x}{2}}{2 \tan\frac{x}{2}} = \frac{1 - 1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2}} = \frac{\tan\frac{x}{2}}{2}\]
Therefore, the given relation is true for n = 1.
Now, let the given relation be true for n = k.
We need to prove that the given relation is true for n = k + 1.
\[\Rightarrow L = \frac{1}{2^k}\cot\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \tan\left( \frac{x}{2^k} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \tan2\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1}{2^k \times \frac{2\tan\left( \frac{x}{2^{k + 1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[ \Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
\[\Rightarrow L = \frac{1 - \tan^2 \left( \frac{x}{2^{k + 1}} \right) + \tan^2 \left( \frac{x}{2^{k + 1}} \right)}{2^{k + 1} \tan\left( \frac{x}{2^{k + 1}} \right)} - \cot x = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
Now,
\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^k}\tan\left( \frac{x}{2^k} \right) + \frac{1}{2^{k + 1}}\tan\left( \frac{x}{2^{k + 1}} \right) = \frac{1}{2^{k + 1}}\cot\left( \frac{x}{2^{k + 1}} \right) - \cot x\]
Thus,
\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ N and \[0 < x < \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
3 + 7 + 11 + ..... + to n terms = n(2n+1)
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1
Answer the following:
Prove by method of induction
`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀ "n" ∈ "N"`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.