Advertisements
Advertisements
प्रश्न
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
उत्तर
Let P(n) be the given statement.
Now,
\[P(n): 7^{2n} + 2^{3n - 3} . 3^{n - 1} \text{ is divisible by } 25 . \]
\[\text{ Step1} : \]
\[P(1): 7^2 + 2^{3 - 3} . 3^{1 - 1} = 49 + 1 = 50 \]
\[\text{ It is divisible by 25} . \]
\[\text{ Thus, P(1) is true} \]
\[\text{ Step2: Let } P\left( m \right) \text{ be true . } \]
\[\text{ Now } , \]
\[ 7^{2m} + 2^{3m - 3} . 3^{m - 1} \text{ is divisible by} 25 . \]
\[Suppose: \]
\[ 7^{2m} + 2^{3m - 3} . 3^{m - 1} = 25\lambda . . . (1)\]
\[\text{ We have to show that } P\left( m + 1 \right) \text{ is true whenever P(m) is true} . \]
\[\text{ Now, } \]
\[P\left( m + 1 \right) = 7^{2m + 2} + 2^{3m} . 3^m \]
\[ = 7^{2m + 2} + 7^2 . 2^{3m - 3} . 3^{m - 1} - 7^2 . 2^{3m - 3} . 3^{m - 1} + 2^{3m} . 3^m \]
\[ = 7^2 \left( 7^{2m} + 2^{3m - 3} . 3^{m - 1} \right) + 2^{3m} . 3^m \left( 1 - \frac{49}{24} \right)\]
\[ = 7^2 \times 25\lambda - 2^{3m} . 3^m \times \frac{25}{2^3 . 3^1} \left[ \text{ Using } (1) \right]\]
\[ = 25\left( 49\lambda - 2^{3m - 3} . 3^{m - 1} \right) \]
\[\text{ It is divisible by } 25 . \]
\[\text{ Thus, } P\left( m + 1 \right) \text{ is true .} \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N .\]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
If P (n) is the statement "n(n + 1) is even", then what is P(3)?
12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .
1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
52n −1 is divisible by 24 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
(ab)n = anbn for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Prove by method of induction, for all n ∈ N:
`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n(n2 + 5) is divisible by 6, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.