हिंदी

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by Sn = ,if n is even,if n is odd{n(n+1)22, if n - Mathematics

Advertisements
Advertisements

प्रश्न

Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`

योग

उत्तर

Here P(n): Sn = `{{:((n(n + 1)^2)/2",",  "when n is even"),((n^2(n + 1))/2",",  "when n is odd"):}`

Also, note that any term Tn of the series is given by

Tn = `{{:(n^2, "if n is odd"),(2n^2, "if n is even"):}`

We observe that P(1) is true.

Since P(1): S1 = 12

= 1

= `(1.2)/2`

= `(1^2.(1 + 1))/2`

Assume that P(k) is true for some natural number k, i.e.

Case 1: When k is odd, then k + 1 is even.

We have P(k + 1) : Sk + 1 = 12 + 2 × 22 + ... + k2 + 2 × (k + 1)2

= `(k^2(k + 1))/2 + 2 xx (k + 1)^2`

= `((k + 1))/2 [k^2 + 4(k + 1)]`  .....(As k is odd, 12 + 2 × 22 + ... + k2 = `k^2 ((k + 1))/2`)

= `(k + 1)/2 [k^2 + 4k + 4]`

= `(k + 1)/2 (k + 2)^2`

= `(k + 1) ([(k + 1) + 1]^2)/2`

So P(k + 1) is true.

Whenever P(k) is true in the case when k is odd.

Case 2: When k is even, then k + 1 is odd.

Now, P(k + 1): 12 + 2 × 22 + ... + 2.k2 + (k + 1)2

= `(k(k + 1)^2)/2 + (k + 1)^2`  ......(As k is even, 12 + 2 × 22 + ... + 2k2 = `k(k + 1)^2/2`)

= `((k + 1)^2 (k + 2))/2`

= `((k + 1)^2 ((k + 1) + 1))/2`

Therefore, P(k + 1) is true.

Whenever P(k) is true for the case when k is even.

Thus, P(k + 1) is true.

Whenever, P(k) is true for any natural numbers k.

Hence, P(n) true for all natural numbers.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Principle of Mathematical Induction - Solved Examples [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 4 Principle of Mathematical Induction
Solved Examples | Q 10 | पृष्ठ ६७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×