हिंदी

The Distributive Law from Algebra States that for All Real Numbers C , a 1 and a 2 , We Have C ( a 1 + a 2 ) = C a 1 + C a 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]

उत्तर

\[\text{ Given: For all real numbers } c, a_1 \text{ and }  a_2 , c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]

\[\text{ To prove: For all natural numbers, } n \geq 2, \text{ if } c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]

\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n \]

\[ \text{ Proof } : \]

\[\text{ Let } P\left( n \right): c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n \text{ for all natural numbers n } \geq 2 \text{ and  } c, a_1 , a_2 , . . . , a_n \in R . \]

\[\text{ Step I: For } n = 2, \]

\[P\left( 2 \right): \]

\[LHS = c\left( a_1 + a_2 \right)\]

\[RHS = c a_1 + c a_2 \]

\[\text{ As, }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 \left( \text{ Given } \right)\]

\[ \Rightarrow LHS = RHS\]

\[\text{ So, it is true for } n = 2 . \]

\[ \text{ Step II: For } n = k, \]

\[\text{ Let }  P\left( k \right): c\left( a_1 + a_2 + . . . + a_k \right) = c a_1 + c a_2 + . . . + c a_k \text{ be true for some natural numbers }  k \geq 2 \text{ and } c, a_1 , a_2 , . . . , a_k \in R . \]

\[\text{ Step III: For }  n = k + 1, \]

\[P\left( k + 1 \right): \]

\[LHS = c\left( a_1 + a_2 + . . . + a_k + a_{k + 1} \right)\]

\[ = c\left[ \left( a_1 + a_2 + . . . + a_k \right) + a_{k + 1} \right]\]

\[ = c\left( a_1 + a_2 + . . . + a_k \right) + c a_{k + 1} \]

\[ = c a_1 + c a_2 + . . . + c a_k + c a_{k + 1} \left( \text{ Using step } II \right)\]

\[RHS = c a_1 + c a_2 + . . . + c a_k + c a_{k + 1} \]

\[\text{ As, } LHS = RHS\]

\[\text{ So, it is also true for n }  = k + 1 . \]

\[\text{ Hence, for all natural numbers,}  n \geq 2, \text{ if }  c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]

\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 50 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Given an example of a statement P (n) such that it is true for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

2 + 4 + 6 + ..... + 2n = n (n+1)


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

1.2 + 2.3 + 3.4 + ..... + n(n + 1) = `"n"/3 ("n" + 1)("n" + 2)`


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


State whether the following proof (by mathematical induction) is true or false for the statement.

P(n): 12 + 22 + ... + n2 = `(n(n + 1) (2n + 1))/6`

Proof By the Principle of Mathematical induction, P(n) is true for n = 1,

12 = 1 = `(1(1 + 1)(2*1 + 1))/6`. Again for some k ≥ 1, k2 = `(k(k + 1)(2k + 1))/6`. Now we prove that

(k + 1)2 = `((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

n(n2 + 5) is divisible by 6, for each natural number n.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×