हिंदी

Sin X + Sin 3 X + . . . + Sin ( 2 N − 1 ) X = Sin 2 N X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 

उत्तर

Let P(n) be the given statement.

\[P(n): \sin x + \sin 3x + . . . + \sin\left( 2n - 1 \right)x = \frac{\sin^2 nx}{\sin x}\]
\[\text{ Step } 1: \]
\[P(1): \sin x = \frac{\sin^2 x}{\sin x}\]
\[\text{ Thus, P(1) is true } . \]
\[\text{ Step 2: } \]
\[\text{ Let P(m) be true .}  \]
\[ \therefore \sin x + \sin 3x + . . . + \sin\left( 2m - 1 \right)x = \frac{\sin^2 mx}{\sin x}\]
\[\text{ We shall show that P(m + 1) is true .}  \]
\[\text{ We know that P(m) is true } . \]
\[ \therefore \sin x + \sin 3x + . . . + \sin (2m - 1) = \frac{\sin^2 mx}{\sin x}\]
\[ \Rightarrow \sin x + \sin 3x + . . . \sin (2m - 1)x + \sin (2m + 1)x = \frac{\sin^2 mx}{\sin x} + \sin (2m + 1)x \left( \text{ Adding }  \sin (2m + 1)x \text{ to both the sides } \right)\]
\[ \Rightarrow P(m + 1)x = \frac{\sin^2 mx + \sin x\left[ \sin mx\cos\left( m + 1 \right)x + \sin\left( m + 1 \right)x \cos x \right]}{\sin x}\]
\[ = \frac{\sin^2 mx + \sin x\left( \sin mx\cos mxcos x - \sin^2 mx\sin x + \sin mx\cos x\cos mx + \cos^2 mx\sin x \right)}{\sin x}\]
\[ = \frac{\sin^2 mx + 2\sin x\cos x\cos mx - \sin^2 x \sin^2 mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx\left( 1 - \sin^2 x \right) + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx \cos^2 x + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\left( \sin mx \cos x + \cos mx \sin x \right)^2}{\sin x}\]
\[ = \frac{\left[ \sin\left( m + 1 \right) \right]^2}{\sin x}\]
\[\text{ [Hence, P(m + 1) is true } . \]
\[ \text{ By the principle of mathematical induction, the given statement P(n) is true for all } n \in N . \]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 39 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


32n+7 is divisible by 8 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

1 + 3 + 5 + ... + (2n – 1) = n2 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×