Advertisements
Advertisements
प्रश्न
उत्तर
Let P(n) be the given statement.
\[\text{ Step } 1: \]
\[P(1): \sin x = \frac{\sin^2 x}{\sin x}\]
\[\text{ Thus, P(1) is true } . \]
\[\text{ Step 2: } \]
\[\text{ Let P(m) be true .} \]
\[ \therefore \sin x + \sin 3x + . . . + \sin\left( 2m - 1 \right)x = \frac{\sin^2 mx}{\sin x}\]
\[\text{ We shall show that P(m + 1) is true .} \]
\[\text{ We know that P(m) is true } . \]
\[ \therefore \sin x + \sin 3x + . . . + \sin (2m - 1) = \frac{\sin^2 mx}{\sin x}\]
\[ \Rightarrow \sin x + \sin 3x + . . . \sin (2m - 1)x + \sin (2m + 1)x = \frac{\sin^2 mx}{\sin x} + \sin (2m + 1)x \left( \text{ Adding } \sin (2m + 1)x \text{ to both the sides } \right)\]
\[ \Rightarrow P(m + 1)x = \frac{\sin^2 mx + \sin x\left[ \sin mx\cos\left( m + 1 \right)x + \sin\left( m + 1 \right)x \cos x \right]}{\sin x}\]
\[ = \frac{\sin^2 mx + \sin x\left( \sin mx\cos mxcos x - \sin^2 mx\sin x + \sin mx\cos x\cos mx + \cos^2 mx\sin x \right)}{\sin x}\]
\[ = \frac{\sin^2 mx + 2\sin x\cos x\cos mx - \sin^2 x \sin^2 mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx\left( 1 - \sin^2 x \right) + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\sin^2 mx \cos^2 x + 2\sin x\cos x\cos mx + \cos^2 mx \sin^2 x}{\sin x}\]
\[ = \frac{\left( \sin mx \cos x + \cos mx \sin x \right)^2}{\sin x}\]
\[ = \frac{\left[ \sin\left( m + 1 \right) \right]^2}{\sin x}\]
\[\text{ [Hence, P(m + 1) is true } . \]
\[ \text{ By the principle of mathematical induction, the given statement P(n) is true for all } n \in N . \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
32n+7 is divisible by 8 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ Given } a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
22n – 1 is divisible by 3.
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
32n – 1 is divisible by 8, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.
By using principle of mathematical induction for every natural number, (ab)n = ______.