हिंदी

Prove the statement by using the Principle of Mathematical Induction: 2n < (n + 2)! for all natural number n. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.

प्रमेय

उत्तर

P(n) is 2n < (n + 2)!

So, substituting different values for n, we get,

P(0) ⇒ 0 < 2!

P(1) ⇒ 2 < 3!

P(2) ⇒ 4 < 4!

P(3) ⇒ 6 < 5!

Let P(k) = 2k < (k + 2)! is true;

Now, we get that,

⇒ P(k + 1) = 2(k + 1)((k + 1) + 2))!

We know that,

[(k + 1) + 2)! = (k + 3)! = (k + 3)(k + 2)(k + 1) ............. 3 × 2 × 1]

But, we also know that,

= 2(k + 1) × (k + 3)(k + 2) ............ 3 × 1 > 2(k + 1)

Therefore, 2(k + 1) < ((k + 1) + 2)!

⇒ P(k + 1) is true when P(k) is true.

Therefore, by Mathematical Induction,

P(n) = 2n < (n + 2)! Is true for all natural number n.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Principle of Mathematical Induction - Exercise [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 4 Principle of Mathematical Induction
Exercise | Q 12 | पृष्ठ ७१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 2.3^3 + 3.3^3  +...+ n.3^n = `((2n -1)3^(n+1) + 3)/4`

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+7 is divisible by 8 for all n ∈ N.

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×