हिंदी

Given a 1 = 1 2 ( a 0 + a A 0 ) , a 2 = 1 2 ( a 1 + a A 1 ) and a N + 1 = 1 2 ( a N + a A N ) for N ≥ 2 , Where a > 0 , a > 0 . Prove a N − √ a A N + √ a = ( a 1 − √ a A 1 + √ a ) 2 N − 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]

उत्तर

\[\text{ Given: }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for } n \geq 2, \text { where } a > 0, A > 0 . \]
\[\text{ To prove: } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Proof: } \]
\[\text{ Let } p\left( n \right): \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} \]
\[\text{ Step   I: For }  n = 1, \]
\[LHS = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{1 - 1}} = \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}}\]
\[\text{ As, LHS = RHS } \]
\[\text{ So, it is true for n }  = 1 . \]
\[\text{ Step II: For n } = k, \]
\[\text{ Let }  p\left( k \right): \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \text{ be true for some values of k }  \geq 2 . \]
\[\text{ Step III: For } n = k + 1, \]
\[p\left( k + 1 \right): \]
\[LHS = \frac{a_{k + 1} - \sqrt{A}}{a_{k + 1} + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) - \sqrt{A}}{\frac{1}{2}\left( a_k + \frac{A}{a_k} \right) + \sqrt{A}}\]
\[ = \frac{\frac{1}{2}\left( \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{a_k} \right)}{\frac{1}{2}\left( \frac{{a_k}^2 + A + 2 a_k \sqrt{A}}{a_k} \right)}\]
\[ = \frac{{a_k}^2 + A - 2 a_k \sqrt{A}}{{a_k}^2 + A + 2 a_k \sqrt{A}}\]
\[ = \frac{\left( a_k - \sqrt{A} \right)^2}{\left( a_k + \sqrt{A} \right)^2}\]
\[ = \left( \frac{a_k - \sqrt{A}}{a_k + \sqrt{A}} \right)^2 \]
\[ = \left[ \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1}} \right]^2 \left( \text { Using step }  II \right)\]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1} \times 2} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k - 1 + 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[RHS = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{k + 1 - 1}} \]
\[ = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^k} \]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n }  = k + 1 . \]
\[\text{ Hence, } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right)^{2^{n - 1}} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 42 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


52n −1 is divisible by 24 for all n ∈ N.


11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Prove by method of induction, for all n ∈ N:

Given that tn+1 = 5tn + 4, t1 = 4, prove that tn = 5n − 1


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


Prove that `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`, for all natural numbers n > 1.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×