Advertisements
Advertisements
प्रश्न
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
उत्तर
Let P(n) ≡ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`, for all n ∈ N
But the first factor in each term
i.e., 1, 3, 5 … are in A.P. with a = 1 and d = 2.
∴ nth term = a + (n –1)d = 1 +(n – 1)2 = (2n – 1)
Also second factor in each term
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n+1)
∴ nth term, tn = (2n – 1) (2n + 1)
∴ P(n) ≡ 1.3 + 3.5 + 5.7 + .... + (2n – 1) (2n + 1) = `"n"/3(4"n"^2 + 6"n" - 1)`
Step I:
Put n = 1
L.H.S. = 1.3 = 3
R.H.S. = `1/3[4(1)^2 + 6(1) - 1]` = 3 = L.H.S.
∴ P(n) is true for n = 1.
Step II:
Let us consider that P(n) is true for n = k
∴ 1.3 + 3.5 + 5.7 + ..... + (2k – 1)(2k + 1)
= `"k"/3(4"k"^2 + 6"k" - 1)` ...(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
1.3 + 3.5 + 5.7 + …. + [2(k + 1) – 1][2(k + 1) + 1]
= `(("k" + 1))/3[4("k" + 1)^2 + 6("k" + 1) - 1]`
= `(("k" + 1))/3(4"k"^2 + 8"k" + 4 + 6"k" + 6 - 1)`
= `(("k" + 1))/3(4"k"^2 + 14"k" + 9)`
L.H.S. = 1.3 + 3.5 + 5.7 + ... + [2(k + 1) – 1][2(k + 1) + 1]
= 1.3 + 3.5 + 5.7 + ... + (2k – 1)(2k + 1) + (2k + 1)(2k + 3)
= `"k"/3(4"k"^2 + 6"k" - 1) + (2"k" + 1) (2"k" + 3)` ...[From (i)]
= `1/3[4"k"^3 + 6"k"^2 - "k" + 3(2"k" + 1)(2"k" + 3)]`
= `1/3(4"k"^3 + 6"k"^2 - "k" + 12"k"^2 + 24"k" + 9)`
= `1/3(4"k"^3 + 18"k"^2 + 23"k" + 9)`
= `1/3("k" + 1)(4"k"^2 + 14"k" + 9)`
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)` for all n ∈ N.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N (2n +7) < (n + 3)2
Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
52n+2 −24n −25 is divisible by 576 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Answer the following:
Prove, by method of induction, for all n ∈ N
8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2
Answer the following:
Prove by method of induction loga xn = n logax, x > 0, n ∈ N
Answer the following:
Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Prove the statement by using the Principle of Mathematical Induction:
n3 – 7n + 3 is divisible by 3, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.
Prove the statement by using the Principle of Mathematical Induction:
2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.
State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all n ∈ N.