Advertisements
Advertisements
Question
Prove by method of induction, for all n ∈ N:
1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`
Solution
Let P(n) ≡ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`, for all n ∈ N
But the first factor in each term
i.e., 1, 3, 5 … are in A.P. with a = 1 and d = 2.
∴ nth term = a + (n –1)d = 1 +(n – 1)2 = (2n – 1)
Also second factor in each term
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1)2 = (2n+1)
∴ nth term, tn = (2n – 1) (2n + 1)
∴ P(n) ≡ 1.3 + 3.5 + 5.7 + .... + (2n – 1) (2n + 1) = `"n"/3(4"n"^2 + 6"n" - 1)`
Step I:
Put n = 1
L.H.S. = 1.3 = 3
R.H.S. = `1/3[4(1)^2 + 6(1) - 1]` = 3 = L.H.S.
∴ P(n) is true for n = 1.
Step II:
Let us consider that P(n) is true for n = k
∴ 1.3 + 3.5 + 5.7 + ..... + (2k – 1)(2k + 1)
= `"k"/3(4"k"^2 + 6"k" - 1)` ...(i)
Step III:
We have to prove that P(n) is true for n = k + 1
i.e., to prove that
1.3 + 3.5 + 5.7 + …. + [2(k + 1) – 1][2(k + 1) + 1]
= `(("k" + 1))/3[4("k" + 1)^2 + 6("k" + 1) - 1]`
= `(("k" + 1))/3(4"k"^2 + 8"k" + 4 + 6"k" + 6 - 1)`
= `(("k" + 1))/3(4"k"^2 + 14"k" + 9)`
L.H.S. = 1.3 + 3.5 + 5.7 + ... + [2(k + 1) – 1][2(k + 1) + 1]
= 1.3 + 3.5 + 5.7 + ... + (2k – 1)(2k + 1) + (2k + 1)(2k + 3)
= `"k"/3(4"k"^2 + 6"k" - 1) + (2"k" + 1) (2"k" + 3)` ...[From (i)]
= `1/3[4"k"^3 + 6"k"^2 - "k" + 3(2"k" + 1)(2"k" + 3)]`
= `1/3(4"k"^3 + 6"k"^2 - "k" + 12"k"^2 + 24"k" + 9)`
= `1/3(4"k"^3 + 18"k"^2 + 23"k" + 9)`
= `1/3("k" + 1)(4"k"^2 + 14"k" + 9)`
= R.H.S.
∴ P(n) is true for n = k + 1
Step IV:
From all steps above by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)` for all n ∈ N.
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/(4(n+3))`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
\[\text{ A sequence } a_1 , a_2 , a_3 , . . . \text{ is defined by letting } a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]
\[\text { A sequence } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and } x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that } x_n = \frac{2}{n!} \text{ for all } n \in N .\]
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2.
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
2n + 1 < 2n, for all natual numbers n ≥ 3.
Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Prove the statement by using the Principle of Mathematical Induction:
4n – 1 is divisible by 3, for each natural number n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, 7n – 2n is divisible by 5.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.
A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.