English

Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that: ∑t=1n-1t(t+1)=n(n-1)(n+1)3, for all natural numbers n ≥ 2. - Mathematics

Advertisements
Advertisements

Question

Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.

Sum

Solution

Let the given statement P(n), be given as

P(n) : `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2

We observe that

P(2) : `sum_(t = 1)^(2 - 1) t(t + 1) = sum_(t = 1)^1 t(t + 1)`

= 1.2

= `(1.2.3)/3`

= `(2.(2 - 1)(2 + 1))/3`

Thus, P(n) in true for n = 2.

Assume that P(n) is true for n = k ∈ N.

i.e., P(k) : `sum_(t = 1)^(k - 1) t(t + 1) = (k(k - 1)(k + 1))/3`

To prove that P(k + 1) is true

We have `sum_("t" = 1)^(("k" + 1 - 1)) "t"("t" + 1) = sum_("t" = 1)^"k" "t"("t" + 1)`

= `sum_("t" = 1)^(k - 1) t(t + 1) + k(k + 1)`

= `(k(k - 1)(k + 1))/3 + k(k + 1)`

= `k(k + 1)[(k - 1 + 3)/3]`

= `(k(k + 1)(k + 2))/3`

= `((k + 1)((k + 1) - 1)((k + 1) + 1))/3`

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all natural numbers n ≥ 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Solved Examples [Page 62]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Solved Examples | Q 2 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


Given an example of a statement P (n) such that it is true for all n ∈ N.

 

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 


1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 


32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


(ab)n = anbn for all n ∈ N. 

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×