Advertisements
Advertisements
Question
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
Solution
Let P(n) be the given statement.
Now,
\[P(n): a + (a + d) + (a + 2d) + . . . + (a + (n - 1)d) = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[\text{ Step1} : \]
\[P(1) = a = \frac{1}{2}(2a + (1 - 1)d)\]
\[\text{ Hence, P(1) is true .} \]
\[\text{ Step 2: } \]
\[\text{ Suppose P(m) is true .} \]
\[\text{ Then,} \]
\[a + (a + d) + . . . + (a + (m - 1)d) = \frac{m}{2}\left[ 2a + (m - 1)d \right]\]
\[\text{ We have to show that P(m + 1) is true whenever P(m) is true } . \]
\[\text{ That is,} \]
\[a + (a + d) + . . . + (a + md) = \frac{(m + 1)}{2}\left[ 2a + md \right]\]
\[\text{ We know that P(m) is true} . \]
\[\text{ Thus, we have:} \]
\[a + (a + d) + . . . + (a + (m - 1)d) = \frac{m}{2}\left[ 2a + (m - 1)d \right]\]
\[ \Rightarrow a + (a + d) + . . . + (a + (m - 1)d) + (a + md) = \frac{m}{2}\left[ 2a + (m - 1)d \right] + (a + md) \left[ \text{ Adding} (a + md) \text{ to both sides } \right]\]
\[ \Rightarrow P(m + 1) = \frac{1}{2}\left[ 2am + m^2 d - md + 2a + 2md \right]\]
\[ \Rightarrow P(m + 1) = \frac{1}{2}\left[ 2a(m + 1) + md(m + 1) \right]\]
\[ = \frac{1}{2}(m + 1)(2a + md)\]
\[\text{ Thus, P(m + 1) is true . } \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N .\]
APPEARS IN
RELATED QUESTIONS
Prove the following by using the principle of mathematical induction for all n ∈ N:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
Given an example of a statement P (n) such that it is true for all n ∈ N.
\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]
n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.
72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.
2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .
Prove by method of induction, for all n ∈ N:
3 + 7 + 11 + ..... + to n terms = n(2n+1)
Prove by method of induction, for all n ∈ N:
12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`
Prove by method of induction, for all n ∈ N:
5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Answer the following:
Prove, by method of induction, for all n ∈ N
`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
1 + 3 + 5 + ... + (2n – 1) = n2
Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:
`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.
Give an example of a statement P(n) which is true for all n. Justify your answer.
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
n2 < 2n for all natural numbers n ≥ 5.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`.
Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin ((n + 1))/2 theta)/(sin theta/2)`, for all n ∈ N.
By using principle of mathematical induction for every natural number, (ab)n = ______.