English

Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = sin(α+n-12β)sin(nβ2)sin(β2) - Mathematics

Advertisements
Advertisements

Question

Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`

Sum

Solution

Consider P(n): sinα + sin(α + β) + sin(α + 2β) + ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`, for all natural number n.

We observe that P(1) is true.

Since P(1): sin α = `(sin(alpha + 0) sin beta/2)/(sin  beta/2)`

Assume that P(n) is true for some natural numbers k.

i.e., P(k): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β)

= `(sin (alpha + (k - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2))`

Now, to prove that P(k + 1) is true.

We have P(k + 1): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β) + sin(α + kβ)

= `(sin (alpha + ("k" - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2)) + sin(alpha + kbeta)`

= `(sin(alpha + (k - 1)/2 beta) sin  (kbeta)/2 + sin(alpha + kbeta) sin  beta/2)/(sin  beta/2)`

= `(cos(alpha - beta/2) - cos(alpha + kbeta - beta/2) + cos(alpha + kbeta - beta/2) - cos(alpha + kbeta + beta/2))/(2sin  beta/2)`

= `(cos(alpha - beta/2) - cos(alpha + kbeta + beta/2))/(2sin  beta/2)`

= `(sin  (alpha + (kbeta)/2)sin  ((kbeta + beta)/2))/(sin  beta/2)`

= `(sin(alpha + (kbeta)/2) sin(k + 1)(beta/2))/(sin  beta/2)`

Thus P(k + 1) is true whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural number n.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Principle of Mathematical Induction - Solved Examples [Page 65]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 4 Principle of Mathematical Induction
Solved Examples | Q 8 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 

\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


Prove that, sinθ + sin2θ + sin3θ + ... + sinnθ = `((sin ntheta)/2 sin  ((n + 1))/2 theta)/(sin  theta/2)`, for all n ∈ N.


Show that `n^5/5 + n^3/3 + (7n)/15` is a natural number for all n ∈ N.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×