English

Prove by method of induction, for all n ∈ N: [1201]n=[12n01] ∀ n ∈ N - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove by method of induction, for all n ∈ N:

`[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]` ∀ n ∈ N

Sum

Solution

Let P(n) ≡ `[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]`

Step 1:

For n = 1,

L.H.S. = `[(1, 2),(0, 1)]^1 = [(1, 2),(0, 1)]`

R.H.S. = `[(1, 2),(0, 1)]`

∴ L.H.S. = R.H.S. 

∴ P(1) is true.

Step 2:

Let us assume that for some k ∈ N, P(k) is true,

i.e., `[(1, 2),(0, 1)]^"k" = [(1, 2"k"),(0, 1)]`     ...(1)

Step 3:

To prove that P(k+ 1) is true, i.e., to prove that

`[(1, 2),(0, 1)]^("k" + 1) = [(1, 2("k" + 1)),(0, 1)]`

Now, L.H.S. = `[(1, 2),(0, 1)]^("k" + 1)`

= `[(1, 2),(0, 1)]^"k" [(1, 2),(0, 1)]`

= `[(1, 2"k"),(0, 1)] [(1, 2),(0, 1)]`    ...[By (1)]

= `[(1 + 0, 2 + 2"k"),(0 + 0, 0 + 1)]`

= `[(1, 2("k" + 1)),(0, 1)]`

= R.H.S.

∴ P(k + 1) is true.

Step 4:

From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,

i.e., `[(1, 2),(0, 1)]^"n" = [(1, 2"n"),(0, 1)]`, ∀ n ∈ N

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Methods of Induction and Binomial Theorem - Exercise 4.1 [Page 74]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Methods of Induction and Binomial Theorem
Exercise 4.1 | Q 16 | Page 74

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 

\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]


\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]


Prove by method of induction, for all n ∈ N:

12 + 32 + 52 + .... + (2n − 1)2 = `"n"/3 (2"n" − 1)(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

1.3 + 3.5 + 5.7 + ..... to n terms = `"n"/3(4"n"^2 + 6"n" - 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove by method of induction loga xn = n logax, x > 0, n ∈ N


Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n2 < 2n for all natural numbers n ≥ 5.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×