English

( 2 N ) ! 2 2 N ( N ! ) 2 ≤ 1 √ 3 N + 1 for All N ∈ N . - Mathematics

Advertisements
Advertisements

Question

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .

Solution

Let P(n) be the given statement.
Thus, we have .

\[P\left( n \right): \frac{\left( 2n \right)!}{2^{2n} \left( n! \right)^2} \leq \frac{1}{\sqrt{3n + 1}}\]

\[\text{ Step1} : \]

\[P(1): \frac{2!}{2^2 . 1} = \frac{1}{2} \leq \frac{1}{\sqrt{3 + 1}}\]

\[\text{ Thus, P(1) is true}  . \]

\[\text{ Step2: }  \]

\[\text{ Let P(m) be true .}  \]

\[\text{ Thus, we have: } \]

\[\frac{\left( 2m \right)!}{2^{2m} \left( m! \right)^2} \leq \frac{1}{\sqrt{3m + 1}}\]

\[\text{ We need to prove that P(m + 1) is true .} \]

Now,

\[P(m + 1): \]

\[\frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} = \frac{\left( 2m + 2 \right)\left( 2m + 1 \right)\left( 2m \right)!}{2^{2m} . 2^2 \left( m + 1 \right)^2 \left( m! \right)^2}\]

\[ \Rightarrow \frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} \leq \frac{\left( 2m \right)!}{2^{2m} \left( m! \right)^2} \times \frac{\left( 2m + 2 \right)\left( 2m + 1 \right)}{2^2 \left( m + 1 \right)^2}\]

\[ \Rightarrow \frac{(2m + 2)!}{2^{2m + 2} \left( (m + 1)! \right)^2} \leq \frac{2m + 1}{2\left( m + 1 \right)\sqrt{3m + 1}}\]

\[\Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{\left( 2m + 1 \right)^2}{4 \left( m + 1 \right)^2 \left( 3m + 1 \right)}}\]

\[ \Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{\left( 4 m^2 + 4m + 1 \right) \times \left( 3m + 4 \right)}{4\left( 3 m^3 + 7 m^2 + 5m + 1 \right)\left( 3m + 4 \right)}}\]

\[ \Rightarrow \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} \leq \sqrt{\frac{12 m^3 + 28 m^2 + 19m + 4}{\left( 12 m^3 + 28 m^2 + 20m + 4 \right)\left( 3m + 4 \right)}}\]

\[ \because \frac{12 m^3 + 28 m^2 + 19m + 4}{\left( 12 m^3 + 28 m^2 + 20m + 4 \right)} < 1\]

\[ \therefore \frac{\left( 2m + 2 \right)!}{2^{2m + 2} \left( \left( m + 1 \right)! \right)^2} < \frac{1}{\sqrt{3m + 4}}\]

Thus, P(m + 1) is true.
Hence, by mathematical induction

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] is true for all n ∈ N

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Mathematical Induction - Exercise 12.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 36 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+ `1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`

Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

32n+7 is divisible by 8 for all n ∈ N.

 

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 

(ab)n = anbn for all n ∈ N. 

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(24n−1) is divisible by 15


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Let P(n): “2n < (1 × 2 × 3 × ... × n)”. Then the smallest positive integer for which P(n) is true is ______.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


For all n ∈ N, 3.52n+1 + 23n+1 is divisible by ______.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×