Advertisements
Advertisements
प्रश्न
Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`
उत्तर
Consider P(n): sinα + sin(α + β) + sin(α + 2β) + ... + sin(α + (n – 1)β)
= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`, for all natural number n.
We observe that P(1) is true.
Since P(1): sin α = `(sin(alpha + 0) sin beta/2)/(sin beta/2)`
Assume that P(n) is true for some natural numbers k.
i.e., P(k): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β)
= `(sin (alpha + (k - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2))`
Now, to prove that P(k + 1) is true.
We have P(k + 1): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β) + sin(α + kβ)
= `(sin (alpha + ("k" - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2)) + sin(alpha + kbeta)`
= `(sin(alpha + (k - 1)/2 beta) sin (kbeta)/2 + sin(alpha + kbeta) sin beta/2)/(sin beta/2)`
= `(cos(alpha - beta/2) - cos(alpha + kbeta - beta/2) + cos(alpha + kbeta - beta/2) - cos(alpha + kbeta + beta/2))/(2sin beta/2)`
= `(cos(alpha - beta/2) - cos(alpha + kbeta + beta/2))/(2sin beta/2)`
= `(sin (alpha + (kbeta)/2)sin ((kbeta + beta)/2))/(sin beta/2)`
= `(sin(alpha + (kbeta)/2) sin(k + 1)(beta/2))/(sin beta/2)`
Thus P(k + 1) is true whenever P(k) is true.
Hence, by the Principle of Mathematical Induction P(n) is true for all natural number n.
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`
Prove the following by using the principle of mathematical induction for all n ∈ N: x2n – y2n is divisible by x + y.
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]
\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\]
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
52n −1 is divisible by 24 for all n ∈ N.
32n+7 is divisible by 8 for all n ∈ N.
32n+2 −8n − 9 is divisible by 8 for all n ∈ N.
Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N?
\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\] for all n ∈ N .
x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
13 + 33 + 53 + .... to n terms = n2(2n2 − 1)
Answer the following:
Prove, by method of induction, for all n ∈ N
2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.
Prove the statement by using the Principle of Mathematical Induction:
2n < (n + 2)! for all natural number n.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.
By using principle of mathematical induction for every natural number, (ab)n = ______.