मराठी

Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = sin(α+n-12β)sin(nβ2)sin(β2) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`

बेरीज

उत्तर

Consider P(n): sinα + sin(α + β) + sin(α + 2β) + ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`, for all natural number n.

We observe that P(1) is true.

Since P(1): sin α = `(sin(alpha + 0) sin beta/2)/(sin  beta/2)`

Assume that P(n) is true for some natural numbers k.

i.e., P(k): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β)

= `(sin (alpha + (k - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2))`

Now, to prove that P(k + 1) is true.

We have P(k + 1): sin α + sin(α + β) + sin(α + 2β) + ... + sin(α + (k – 1)β) + sin(α + kβ)

= `(sin (alpha + ("k" - 1)/2 beta)sin((kbeta)/2))/(sin(beta/2)) + sin(alpha + kbeta)`

= `(sin(alpha + (k - 1)/2 beta) sin  (kbeta)/2 + sin(alpha + kbeta) sin  beta/2)/(sin  beta/2)`

= `(cos(alpha - beta/2) - cos(alpha + kbeta - beta/2) + cos(alpha + kbeta - beta/2) - cos(alpha + kbeta + beta/2))/(2sin  beta/2)`

= `(cos(alpha - beta/2) - cos(alpha + kbeta + beta/2))/(2sin  beta/2)`

= `(sin  (alpha + (kbeta)/2)sin  ((kbeta + beta)/2))/(sin  beta/2)`

= `(sin(alpha + (kbeta)/2) sin(k + 1)(beta/2))/(sin  beta/2)`

Thus P(k + 1) is true whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(n) is true for all natural number n.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Principle of Mathematical Induction - Solved Examples [पृष्ठ ६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 4 Principle of Mathematical Induction
Solved Examples | Q 8 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`

Prove the following by using the principle of mathematical induction for all n ∈ N

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`

Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ Nx2n – y2n is divisible by x y.


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 


12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 

52n −1 is divisible by 24 for all n ∈ N.


32n+7 is divisible by 8 for all n ∈ N.

 

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.


Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .


\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Answer the following:

Prove, by method of induction, for all n ∈ N

2 + 3.2 + 4.22 + ... + (n + 1)2n–1 = n.2n 


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.


A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk = `(d_(k - 1))/"k"` for all natural numbers, k ≥ 2. Show that dn = `2/(n!)` for all n ∈ N.


By using principle of mathematical induction for every natural number, (ab)n = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×