Advertisements
Advertisements
प्रश्न
12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]
उत्तर
Let P(n) be the given statement.
Now,
\[P(n) = 1^2 + 3^2 + 5^2 + . . . + (2n - 1 )^2 = \frac{1}{3}n(4 n^2 - 1)\]
\[\text{ Step 1:} \]
\[P(1) = 1^2 = 1 = \frac{1}{3} \times 1 \times (4 - 1)\]
\[\text{ Hence, P(1) is true } . \]
\[\text{ Step 2: } \]
\[\text{ Let P(m) be true } . \]
\[\text{ Then, } \]
\[ 1^2 + 3^2 + . . . + (2m - 1 )^2 = \frac{1}{3}m(4 m^2 - 1)\]
\[\text{ To prove: P(m + 1) is true whenever P(m) is true } . \]
\[\text{ That is, } \]
\[ 1^2 + 3^2 = . . . + (2m + 1 )^2 = \frac{1}{3}(m + 1)\left\{ 4(m + 1 )^2 - 1 \right\}\]
\[\text{ We know that P(m) is true } . \]
\[\text{ Thus, we have: } \]
\[ 1^2 + 3^2 + . . . + (2m - 1 )^2 = \frac{1}{3}m(4 m^2 - 1)\]
\[ \Rightarrow 1^2 + 3^2 + . . . + (2m - 1 )^2 + (2m + 1 )^2 = \frac{1}{3}m(4 m^2 - 1) + (2m + 1 )^2 \left[ \text{ Adding } (2m + 1 )^2 \text{ to both sides } \right]\]
\[ \Rightarrow P(m + 1) = \frac{1}{3}\left( 4 m^3 - m + 12 m^2 + 12m + 3 \right)\]
\[ \Rightarrow P(m + 1) = \frac{1}{3}(4 m^3 - m + 8 m^2 + 4m + 4 m^2 + 8m + 3)\]
\[ = \frac{1}{3}(m + 1)(4 m^2 + 8m + 3) \]
\[ = \frac{1}{3}(m + 1)(4(m + 1 )^2 - 1)\]
\[\text{ Thus, P(m + 1) is true } . \]
\[\text{ By the principle of mathematical induction, P(n) is true for all n } \in N . \]
APPEARS IN
संबंधित प्रश्न
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N:
Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11
Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.
Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.
If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.
If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.
If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.
\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]
\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]
2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]
1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]
1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]
a + ar + ar2 + ... + arn−1 = \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]
a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]
52n −1 is divisible by 24 for all n ∈ N.
11n+2 + 122n+1 is divisible by 133 for all n ∈ N.
Prove that n3 - 7n + 3 is divisible by 3 for all n \[\in\] N .
\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{ for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n } \in N \text{ using mathematical induction .} \]
Prove by method of induction, for all n ∈ N:
`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`
Prove by method of induction, for all n ∈ N:
(24n−1) is divisible by 15
Prove by method of induction, for all n ∈ N:
3n − 2n − 1 is divisible by 4
Answer the following:
Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N
Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.
Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.
Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by
Sn = `{{:((n(n + 1)^2)/2",", "if n is even"),((n^2(n + 1))/2",", "if n is odd"):}`
Prove the statement by using the Principle of Mathematical Induction:
23n – 1 is divisible by 7, for all natural numbers n.
Prove the statement by using the Principle of Mathematical Induction:
For any natural number n, xn – yn is divisible by x – y, where x and y are any integers with x ≠ y.
Prove the statement by using the Principle of Mathematical Induction:
n3 – n is divisible by 6, for each natural number n ≥ 2.
A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak – 1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.
If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.