मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Prove by method of induction 52n − 22n is divisible by 3, for all n ∈ N

बेरीज

उत्तर

Let P(n) ≡ 52n – 22n is divisible by 3, for all n ∈ N.

Step 1:

For n = 1, 52n – 22n = 52 – 22 = 25 – 4 = 21, which is divisible by 3.

∴ P(1) is true.

Step 2:

Let us assume that for some k ∈ N, P(k) is true, i.e. 52k – 22k is divisible by 3.

∴ `(5^(2"k") - 2^(2"k"))/3` = m (Say), whre m ∈ N

∴ 52k –  22k = 3m

∴ 52k = 22k + 3m   ...(1)

Step 3:

To prove that P(k + 1) is true, i.e., to prove that `5^(2("k" + 1)) - 2^(2("k" + 1))` is divisible by 3.

Now, `5^(2("k" + 1)) - 2^(2("k" + 1))` = 52k+2 – 22k+2 

= 52k .52 – 22k . 22

= (22k + 3m)25 – 22k . 4    ...[By (1)]

= 25(22k) + 75m – 4(22k)

= 21(22k) + 75m

= 3[7.22k + 25m]

∴ `(5^(2("k" + 1)) - 2^(2("k"+1)))/3` = 7.22k + 25m, where (7.22k + 25m) ∈ N

∴ `5^(2("k" + 1)) - 2^(2("k" + 1))` is divisible by 3

∴ P(k + 1) is true.

Step 4:

From all the above steps and by the principle of mathematical induction P(n) is true for all n ∈ N,

i.e., 52n – 22n is divisible by 3, for all n ∈ N.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Methods of Induction and Binomial Theorem - Miscellaneous Exercise 4.2 [पृष्ठ ८६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Methods of Induction and Binomial Theorem
Miscellaneous Exercise 4.2 | Q II. (11) (iii) | पृष्ठ ८६

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N

(1+3/1)(1+ 5/4)(1+7/9)...`(1 + ((2n + 1))/n^2) = (n + 1)^2`

 

Prove the following by using the principle of mathematical induction for all n ∈ N

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.


If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.


\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

52n −1 is divisible by 24 for all n ∈ N.


32n+7 is divisible by 8 for all n ∈ N.

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 

Prove by method of induction, for all n ∈ N:

5 + 52 + 53 + .... + 5n = `5/4(5^"n" - 1)`


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = `"n"/2(9"n" + 7)`


Answer the following:

Prove, by method of induction, for all n ∈ N

`1/(3.4.5) + 2/(4.5.6) + 3/(5.6.7) + ... + "n"/(("n" + 2)("n" + 3)("n" + 4)) = ("n"("n" + 1))/(6("n" + 3)("n" + 4))`


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`, for all natural numbers n ≥ 2.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

22n – 1 is divisible by 3.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

2n + 1 < 2n, for all natual numbers n ≥ 3.


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

23n – 1 is divisible by 7, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

`sqrt(n) < 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n)`, for all natural numbers n ≥ 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×