मराठी

X2n−1 + Y2n−1 is Divisible by X + Y for All N ∈ N. - Mathematics

Advertisements
Advertisements

प्रश्न

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

उत्तर

Let P(n) be the given statement.
Now, 

P(n):x2n1+y2n1 is divisible by x+y.
 Step1:
P(1):x21+y21=x+y is divisible by x+y
 Step2: 
 Let P(m) be true .
 Also ,
x2m1+y2m1 is divisible by x+y.
 Suppose:
x2m1+y2m1=λ(x+y) whereλN...(1)
 We shall show that P(m+1) is true whenever P(m) is true .
 Now ,
P(m+1)=x2m+1+y2m+1
=x2m+1+y2m+1x2m1.y2+x2m1.y2
=x2m1(x2y2)+y2(x2m1+y2m1)[ From (1)]
=x2m1(x2y2)+y2.λ(x+y)
=(x+y)(x2m1(xy)+λy2)[ It is divisible by (x+y).]
 Thus, P(m+1) is true .
 By the principle of mathematical induction, P(n) is true for all n N.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 12 Mathematical Induction
Exercise 12.2 | Q 38 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following by using the principle of mathematical induction for all n ∈ N

13+ 23+33+...+n3=(n(n+1)2)2


Prove the following by using the principle of mathematical induction for all n ∈ N

1+1(1+2)+1(1+2+3)+...+1(1+2+3+...n)=2nn+1

Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = n(n+1)(n+2)(n+3)4(n+3)


Prove the following by using the principle of mathematical induction for all n ∈ N

1.2 + 2.3 + 3.4+ ... + n(n+1) = [n(n+1)(n+2)3]


Prove the following by using the principle of mathematical induction for all n ∈ N

12+32+52+...+(2n-1)2=n(2n-1)(2n+1)3

Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11


If P (n) is the statement "n(n + 1) is even", then what is P(3)?


Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.


1 + 2 + 3 + ... + nn(n+1)2 i.e. the sum of the first n natural numbers is n(n+1)2 .


1 + 3 + 32 + ... + 3n−1 = 3n12

 

11.2+12.3+13.4+...+1n(n+1)=nn+1


2 + 5 + 8 + 11 + ... + (3n − 1) = 12n(3n+1)

 

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =n(4n2+6n1)3

 

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 

n77+n55+n33+n2237210n is a positive integer for all n ∈ N.  

 


sinx+sin3x+...+sin(2n1)x=sin2nxsinx

 


 Given a1=12(a0+Aa0),a2=12(a1+Aa1) and an+1=12(an+Aan) for n2, where a>0,A>0.
 Prove that anAan+A=(a1Aa1+A)2n1.


 Let P(n) be the statement :2n3n. If P(r) is true, then show that P(r+1) is true . Do you conclude that P(n) is true for all n N?


 A sequence a1,a2,a3,... is defined by letting a1=3 and ak=7ak1 for all natural numbers k2. Show that an=37n1 for all nN.


 A sequence x1,x2,x3,... is defined by letting x1=2 and xk=xk1k for all natural numbers k,k2. Show that xn=2n! for all nN.


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

3n − 2n − 1 is divisible by 4


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Answer the following:

Prove, by method of induction, for all n ∈ N

8 + 17 + 26 + … + (9n – 1) = n2(9n+7)


Answer the following:

Prove, by method of induction, for all n ∈ N

13.4.5+24.5.6+35.6.7+...+n(n+2)(n+3)(n+4)=n(n+1)6(n+3)(n+4)


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

t=1n-1t(t+1)=n(n-1)(n+1)3, for all natural numbers n ≥ 2.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = sin(α+n-12β)sin(nβ2)sin(β2)


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Give an example of a statement P(n) which is true for all n. Justify your answer. 


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

2n < (n + 2)! for all natural number n.


Prove the statement by using the Principle of Mathematical Induction:

n<11+12+...+1n, for all natural numbers n ≥ 2.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = cos(α+(n-12)β)sin(nβ2)sin β2.


If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is ______.


If P(n): 2n < n!, n ∈ N, then P(n) is true for all n ≥ ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.