हिंदी

n 11 11 + n 5 5 + n 3 3 + 62 165 n is a positive integer for all n ∈ N. - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 

उत्तर

Let P(n) be the given statement.
Now, 

\[P(n): \frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n \text{  is a positive integer for all } n \in N . \]

\[\text{ Step }  1: \]

\[P(1) = \frac{1}{11} + \frac{1}{5} + \frac{1}{3} + \frac{62}{165} = \frac{15 + 33 + 55 + 62}{165} = \frac{165}{165} = 1 \]

\[\text{ It is certainly a positive integer }  . \]

\[\text{ Hence, P(1) is true .}  \]

\[\text{ Step2: } \]

\[\text{ Let P(m) be true .}  \]

\[\text{ Then, } \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m \text{ is a positive integer . } \]

\[\text{ Now, let }  \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m = \lambda, \text{ where }  \lambda \in N\text{  is a positive integer . }  \]

\[\text{ We have to show that P(m + 1) is true whenever P(m) is true }  . \]

\[\text{ To prove: } \frac{(m + 1 )^{11}}{11} + \frac{(m + 1 )^5}{5} + \frac{(m + 1 )^3}{3} + \frac{62}{165}(m + 1)\text{  is a positive integer .}  \]

\[\text{ Now, } \]

\[\frac{(m + 1 )^{11}}{11} + \frac{(m + 1 )^5}{5} + \frac{(m + 1 )^3}{3} + \frac{62}{165}(m + 1)\]

\[ = \frac{1}{11}\left( m^{11} + 11 m^{10} + 55 m^9 + 165 m^8 + 330 m^7 + 462 m^6 + 462 m^5 + 330 m^4 + 165 m^3 + 55 m^2 + 11m + 1 \right)\]

\[ + \frac{1}{5}\left( m^5 + 5 m^4 + 10 m^3 + 10 m^2 + 5m + 1 \right) + \frac{1}{3}\left( m^3 + 3 m^2 + 3m + 1 \right)\]

\[ + \frac{62}{165}m + \frac{62}{165}\]

\[ = \left[ \frac{m^{11}}{11} + \frac{m^5}{5} + \frac{m^3}{3} + \frac{62}{165}m \right] + m^{10} + 5 m^9 + 15 m^8 + 30 m^7 + 42 m^6 + 42 m^5 + 31 m^4 + 17 m^3 + 8 m^2 + 3m + \frac{1}{11} + \frac{1}{5} + \frac{1}{3} + \frac{6}{105}\]

\[ = \lambda + m^{10} + 5 m^9 + 15 m^8 + 30 m^7 + 42 m^6 + 42 m^5 + 31 m^4 + 17 m^3 + 8 m^2 + 3m + 1\]

\[\text{ It is a positive integer }  . \]

\[\text{ Thus, P(m + 1) is true }  . \]

\[\text{ By the principle of mathematical induction, P(n) is true for all n }  \in N .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mathematical Induction - Exercise 12.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 12 Mathematical Induction
Exercise 12.2 | Q 33 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

Prove the following by using the principle of mathematical induction for all n ∈ N: 41n – 14n is a multiple of 27.


If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 

If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 

1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .


1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]


a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.


\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 


Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N


x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 

\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 


Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 


Prove by method of induction, for all n ∈ N:

12 + 22 + 32 + .... + n2 = `("n"("n" + 1)(2"n" + 1))/6`


Prove by method of induction, for all n ∈ N:

13 + 33 + 53 + .... to n terms = n2(2n2 − 1)


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Prove by method of induction, for all n ∈ N:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Given that tn+1 = 5tn − 8, t1 = 3, prove by method of induction that tn = 5n−1 + 2


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Prove statement by using the Principle of Mathematical Induction for all n ∈ N, that:

`(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`, for all natural numbers, n ≥ 2. 


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


The distributive law from algebra says that for all real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2.

Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, ..., an are any real numbers, then c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can.


Show by the Principle of Mathematical Induction that the sum Sn of the n term of the series 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... is given by

Sn = `{{:((n(n + 1)^2)/2",",  "if n is even"),((n^2(n + 1))/2",",  "if n is odd"):}`


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove that for all n ∈ N.
cos α + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`.


Prove that, cosθ cos2θ cos22θ ... cos2n–1θ = `(sin 2^n theta)/(2^n sin theta)`, for all n ∈ N.


Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.


If xn – 1 is divisible by x – k, then the least positive integral value of k is ______.


Consider the statement: “P(n) : n2 – n + 41 is prime." Then which one of the following is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×