हिंदी

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer - Mathematics

Advertisements
Advertisements

प्रश्न

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer

योग

उत्तर

P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true.

Let P(n) be 2n < n!

So, the examples of the given statements are,

P(0) ⇒ 20 < 0!

i.e 1 < 1 ⇒ not true.

P(1) ⇒ 21 < 1!

i.e 2 < 1 ⇒ not true.

P(2) ⇒ 22 < 2!

i.e 4 < 2 ⇒ not true.

P(3) ⇒ 23 < 3!

i.e 8 < 6 ⇒ not true.

P(4) ⇒ 24 < 4!

i.e 16 < 24 ⇒ true.

P(5) ⇒ 25 < 5!

i.e 32 < 60 ⇒ true, etc.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Principle of Mathematical Induction - Exercise [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 4 Principle of Mathematical Induction
Exercise | Q 1 | पृष्ठ ७०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following by using the principle of mathematical induction for all n ∈ N

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/(4(n+3))`


Prove the following by using the principle of mathematical induction for all n ∈ N: 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2


Prove the following by using the principle of mathematical induction for all n ∈ N: `1+2+ 3+...+n<1/8(2n +1)^2`


Prove the following by using the principle of mathematical induction for all n ∈ N: 32n + 2 – 8n– 9 is divisible by 8.


Prove the following by using the principle of mathematical induction for all n ∈ N (2+7) < (n + 3)2


If P (n) is the statement "n(n + 1) is even", then what is P(3)?


\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]


1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 

\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 


Prove by method of induction, for all n ∈ N:

3 + 7 + 11 + ..... + to n terms = n(2n+1)


Prove by method of induction, for all n ∈ N:

`1/(1.3) + 1/(3.5) + 1/(5.7) + ... + 1/((2"n" - 1)(2"n" + 1)) = "n"/(2"n" + 1)`


Prove by method of induction, for all n ∈ N:

`1/(3.5) + 1/(5.7) + 1/(7.9) + ...` to n terms = `"n"/(3(2"n" + 3))`


Prove by method of induction, for all n ∈ N:

(23n − 1) is divisible by 7


Answer the following:

Prove, by method of induction, for all n ∈ N

12 + 42 + 72 + ... + (3n − 2)2 = `"n"/2 (6"n"^2 - 3"n" - 1)`


Answer the following:

Prove by method of induction

`[(3, -4),(1, -1)]^"n" = [(2"n" + 1, -4"n"),("n", -2"n" + 1)], ∀  "n" ∈ "N"`


Answer the following:

Prove by method of induction 152n–1 + 1 is divisible by 16, for all n ∈ N.


Define the sequence a1, a2, a3 ... as follows:
a1 = 2, an = 5 an–1, for all natural numbers n ≥ 2.

Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy the formula an = 2.5n–1 for all natural numbers.


Prove by induction that for all natural number n sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β) = `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


Prove by the Principle of Mathematical Induction that 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 for all natural numbers n.


A student was asked to prove a statement P(n) by induction. He proved that P(k + 1) is true whenever P(k) is true for all k > 5 ∈ N and also that P(5) is true. On the basis of this he could conclude that P(n) is true ______.


Prove the statement by using the Principle of Mathematical Induction:

4n – 1 is divisible by 3, for each natural number n.


Prove the statement by using the Principle of Mathematical Induction:

32n – 1 is divisible by 8, for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

For any natural number n, 7n – 2n is divisible by 5.


Prove the statement by using the Principle of Mathematical Induction:

n3 – n is divisible by 6, for each natural number n ≥ 2.


Prove the statement by using the Principle of Mathematical Induction:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.


Prove the statement by using the Principle of Mathematical Induction:

1 + 5 + 9 + ... + (4n – 3) = n(2n – 1) for all natural numbers n.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×